Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Presynaptic depolarization facilitates neurotrophin-induced synaptic potentiation

A Corrigendum to this article was published on 01 February 2008

Abstract

Neurotrophins have been proposed to participate in activity-dependent modifications of neuronal connectivity and synaptic efficacy. Preferential strengthening of active inputs requires restriction of putative neurotrophin-mediated synaptic potentiation to active synapses. Here we report that potentiation of synaptic efficacy by brain-derived neurotrophic factor (BDNF) is greatly facilitated by presynaptic depolarization at developing neuromuscular synapses. Brief depolarization in the presence of low-level BDNF results in a marked potentiation of both evoked and spontaneous synaptic transmission, whereas exposure to either BDNF or depolarization alone is without effect. This potentiation depends on the relative timing of depolarization and reflects an enhancement of transmitter secretion from the presynaptic neuron. Thus synapses made by active inputs may be selectively strengthened by secreted neurotrophins as part of activity-dependent refinement of developing connections or of mature synapses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of depolarization on BDNF-induced changes in evoked postsynaptic currents (EPCs).
Figure 2: Effect of depolarization on BDNF-induced changes in the frequency of miniature postsynaptic currents (MEPCs).
Figure 3: Analyses of MEPCs and EPCs.
Figure 4: The importance of timing of depolarization and the role of Ca2+ influx.

Similar content being viewed by others

References

  1. Thoenen, H. Neurotrophins and neuronal plasticity. Science 270, 593–598 (1995).

    Article  CAS  Google Scholar 

  2. Lo, D. C. Neurotrophic factors and synaptic plasticity. Neuron 15, 979–981 (1995).

    Article  CAS  Google Scholar 

  3. Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133– 1138 (1996).

    Article  CAS  Google Scholar 

  4. Bonhoeffer, T. Neurotrophins and activity-dependent development of the cortex. Curr. Opin. Neurobiol. 6, 119–126 (1996).

    Article  CAS  Google Scholar 

  5. Berninger, B. & Poo, M.-M. Fast actions of neurotrophic factors. Curr. Opin. Neurobiol. 6, 324– 330 (1996).

    Article  CAS  Google Scholar 

  6. Lewin, G. R. & Barde, Y.-A. Physiology of the neurotrophins. Annu. Rev. Neurosci. 19, 289– 317 (1996).

    Article  CAS  Google Scholar 

  7. Gall, C. M. & Isackson, P. J. Limbic seizures increase neuronal production of messenger RNA for nerve growth factor. Science 245, 758–761 (1989).

    Article  CAS  Google Scholar 

  8. Lu, B., Yokoyama, M., Dreyfuss, C. F. & Black, I. B. Depolarizing stimuli regulate nerve growth factor gene expression in cultured hippocampal neurons. Proc. Natl. Acad. Sci. USA 88, 6289–6292 (1991).

    Article  CAS  Google Scholar 

  9. Funakoshi, H. et al. Muscle-derived neurotrophin-4 as an activity-dependent trophic signal for adult motor neurons. Science 268, 1495–1499 (1995).

    Article  CAS  Google Scholar 

  10. Blöchl, A. & Thoenen, H. Characterization of nerve growth factor (NGF) release from hippocampal neurons: evidence for a constitutive and an unconventional sodium-dependent regulated pathway. Eur. J. Neurosci. 7, 1220–1228 (1995).

    Article  Google Scholar 

  11. Goodman, L. J. et al. Regulated release and polarized localization of brain-derived neurotrophic factor in hippocampal neurons. Mol. Cell. Neurosci. 7, 222–238 (1996).

    Article  CAS  Google Scholar 

  12. Wang, X.-H. & Poo, M.-M. Potentiation of developing synapses by postsynaptic release of neurotrophin-4. Neuron 19, 825–835 (1997).

    Article  CAS  Google Scholar 

  13. Lohof, A. M., Ip, N. Y. & Poo, M.-M. Potentiation of developing neuromuscular synapses by the neurotrophins NT-3 and BDNF. Nature 363, 350–353 (1993).

    Article  CAS  Google Scholar 

  14. Stoop, R. & Poo, M.-M. Synaptic modulation by neurotrophic factors: differential and synergistic effects of brain-derived neurotrophic factor and ciliary neurotrophic factor. J. Neurosci. 16, 3256–3264 (1996).

    Article  CAS  Google Scholar 

  15. Lessmann, V., Gottmann, K. & Heumann, R. BDNF and NT-4/5 enhance glutamatergic synaptic transmission in cultured hippocampal neurones. Neuroreport 6, 21–25 (1994).

    Article  CAS  Google Scholar 

  16. Kim, H. G., Wang, T., Olafsson, P. & Lu, B. Neurotrophin 3 potentiates neuronal activity and inhibits gamma-aminobutyratergic synaptic transmission in cortical neurons. Proc. Natl. Acad. Sci. U S A 91, 12341–12345 (1994).

    Article  CAS  Google Scholar 

  17. Kang, H. & Schuman, E. M. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 267, 1658–1662 (1995).

    Article  CAS  Google Scholar 

  18. Levine, E. S., Dreyfus, C. F., Black, I. B. & Plummer, M. R. Brain-derived neurotrophic factor rapidly enhances synaptic transmission in hippocampal neurons via postsynaptic tyrosine kinase receptors. Proc. Natl. Acad. Sci. U S A 92, 8074– 8077 (1995).

    Article  CAS  Google Scholar 

  19. Connolly, J. L., Seeley, P. J. & Greene, L. A. Regulation of growth cone morphology by nerve growth factor: a comparative study by scanning electron microscopy. J. Neurosci. Res. 13, 183–198 (1985).

    Article  CAS  Google Scholar 

  20. McAllister, A. K., Lo D. C. & Katz L. C. Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 15, 791– 803 (1995).

    Article  CAS  Google Scholar 

  21. Cohen-Cory, S. & Fraser, S. E. Effects of brain-derived neurotrophic factor on optic axon branching and remodeling in vitro. Nature 378, 192–196 (1995).

    Article  CAS  Google Scholar 

  22. Ming, G.-L., Lohof, A. & Zheng, J. Acute morphogenic and chemotropic effects of neurotrophins on cultured embryonic Xenopus spinal neurons. J. Neurosci, 17, 7860–7871 (1997).

    Article  CAS  Google Scholar 

  23. Maffei, L., Berardi, N., Domenici, L., Parisi, V. & Pizzorusso, T. Nerve growth factor (NGF) prevents the shift in ocular dominance distribution of visual cortical neurons in monocularly deprived rats. J. Neurosci. 12, 4651– 4662 (1992).

    Article  CAS  Google Scholar 

  24. Cabelli, R. J., Shelton, D. L., Segal, R. A. & Shatz, C. J. Blockade of endogenous ligands of TrkB inhibits formation of ocular dominance columns. Neuron 19, 63– 76 (1997).

    Article  CAS  Google Scholar 

  25. Causing, C. G. et al. Synaptic innervation density is regulated by neuron-derived BDNF . Neuron 18, 257–267 (1997).

    Article  CAS  Google Scholar 

  26. Figurov, A. et al. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 381, 706–709 (1996).

    Article  CAS  Google Scholar 

  27. Korte, M. et al. Virus-mediated gene transfer into hippocampal CA1 region restores long-term potentiation in brain-derived neurotrophic factor mutant mice. Proc. Natl. Acad. Sci. USA 93, 12547–12552 (1996).

    Article  CAS  Google Scholar 

  28. Kang, H., Welcher, A. A., Shelton, D. & Schuman, E. M. Neurotrophins and time: different roles for TrkB signaling in hippocampal long-term potentiation. Neuron 19, 653– 664 (1997).

    Article  CAS  Google Scholar 

  29. Gottschalk, W., Pozzo-Miller, L. D., Figurov, A. & Lu, B. Presynaptic modulation of synaptic transmission and plasticity by brain-derived neurotrophic factor in the developing hippocampus. J. Neurosci. 18, 6830–6839 (1998).

    Article  CAS  Google Scholar 

  30. Wang, X.-H., Berninger, B. & Poo, M.-M. Localized synaptic action of neurotrophin-4. J. Neurosci. 18, 4985–4992 (1998).

    Article  CAS  Google Scholar 

  31. Biffo, S., Offenhauser, N., Carter, B. D. & Barde, Y.-A. Selective binding and internalization by truncated receptors restrict the availability of BDNF during development. Development 121, 2461–2470 (1995).

    CAS  PubMed  Google Scholar 

  32. Birren, S. J., Verdi, J. M. & Anderson, D. J. Membrane depolarization induces p140trk and NGF responsiveness, but not p75 LNGFR, in MAH cells. Science 257, 395–397 (1992).

    Article  CAS  Google Scholar 

  33. McAllister, A. K., Katz, L. C. & Lo, D. C. Neurotrophin regulation of cortical dendritic growth requires activity. Neuron 17, 1057– 1064 (1996).

    Article  CAS  Google Scholar 

  34. Tabti, N., Alder, J. & Poo, M.-M. in Culturing Nerve Cells, 2nd edn. (eds. Banker, G. & Goslin, K.) 237–260 (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  35. Song, H. J. et al. Expression of a putative vesicular acetylcholine transporter facilitates quantal transmitter packaging. Neuron 18, 815–826 (1997).

    Article  CAS  Google Scholar 

  36. Katz, B. The transmission of impulses from nerve to muscle, and the subcellular unit of synaptic action. Proc. R. Soc. Lond. B 155, 455–479 (1962).

    Article  Google Scholar 

  37. Shelton, D. L. et al. Human trks: molecular cloning, tissue distribution, and expression of extracellular domain immunoadhesins. J. Neurosci. 15, 477–491 (1995).

    Article  CAS  Google Scholar 

  38. Bekkers, J. M. & Stevens, C. F. Presynaptic model for long-term potentiation in hippocampus. Nature 346, 724–729 (1990).

    Article  CAS  Google Scholar 

  39. Malinow, R. & Tsien, R. W. Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices. Nature 346, 177–180 (1990).

    Article  CAS  Google Scholar 

  40. Kamiya, H. & Zucker, R. S. Residual Ca2+ and short-term synaptic plasticity. Nature 371, 603–606 (1994).

    Article  CAS  Google Scholar 

  41. Carter, B. D., Zirrgiebel, U. & Barde, Y.-A. Differential regulation of p21ras activation in neurons by nerve growth factor and brain-derived neurotrophic factor. J. Biol. Chem. 270, 21751– 21757 (1995).

    Article  CAS  Google Scholar 

  42. Frank, L., Ventimiglia, R., Anderson, K., Lindsay, R. M. & Rudge, J. S. BDNF down-regulates neurotrophin responsiveness, TrkB protein and TrkB mRNA levels in cultured rat hippocampal neurons. Eur. J. Neurosci. 8, 1220– 1230 (1996).

    Article  CAS  Google Scholar 

  43. Purves, D., Snider, W. D. & Voyvodic, J. T. Trophic regulation of nerve cell morphology and innervation in the autonomic nervous system. Nature 336, 123–128 (1988).

    Article  CAS  Google Scholar 

  44. Meyer-Franke, A., Kaplan, M., Pfrieger, F. W. & Barres, B. A. Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron 15, 805–819 (1995).

    Article  CAS  Google Scholar 

  45. Meyer-Franke, A. et al. Depolarization and cAMP elevation rapidly recruit TrkB to the plasma membrane of CNS neurons. Neuron 21, 681–693 (1998).

    Article  CAS  Google Scholar 

  46. McCleskey, E. W. & Almers, W. Dihydropyridine receptors in muscle are voltage-dependent but most are not functional calcium channels. Nature 314, 747– 751 (1985).

    Article  Google Scholar 

  47. Thoenen, H. & Barde, Y.-A. Physiology of nerve growth factor. Physiol. Rev. 60, 1284– 1335 (1980).

    Article  CAS  Google Scholar 

  48. Song, H.-J., Ming, G.-L. & Poo, M.-M. cAMP-induced switching in the turning direction of nerve growth cones. Nature 388, 275– 278 (1997).

    Article  CAS  Google Scholar 

  49. Reddy, R. et al. Voltage-sensitive adenylyl cyclase activity in cultured neurons: a calcium-independent phenomenon. J. Cell Biol. 24, 14340–14346 (1995).

    Google Scholar 

  50. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Genentech Inc. for providing Trk-IgG fusion protein and Benedikt Berninger and Alejandro Schinder for discussion of the manuscript. This work was supported by grants from NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mu-ming Poo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boulanger, L., Poo, Mm. Presynaptic depolarization facilitates neurotrophin-induced synaptic potentiation. Nat Neurosci 2, 346–351 (1999). https://doi.org/10.1038/7258

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/7258

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing