Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A cytokine-responsive IκB kinase that activates the transcription factor NF-κB

Abstract

Nuclear transcription factors of the NF-κB/Rel family are inhibited by IκB proteins, which inactivate NF-κB by trapping it in the cell cytoplasm. Phosphorylation of IκBs marks them out for destruction, thereby relieving their inhibitory effect on NF-κB. A cytokine-activated protein kinase complex, IKK (for IκB kinase), has now been purified that phosphorylates IκBs on the sites that trigger their degradation. A component of IKK was molecularly cloned and identified as a serine kinase. IKK turns out to be the long-sought-after protein kinase that mediates the critical regulatory step in NF-κB activation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of a TNF-stimulated IκBα kinase activity.
Figure 2: Purification and substrate specificity of IκBα kinase (IKK).
Figure 3: The predicted amino-acid sequence of IKKα: the two peptides whose sequence was determined are overlined.
Figure 4: Cell-free translation of IKKα generates IκB kinase activity.
Figure 5: Expression and cytokine activation of IKK in mammalian cells.
Figure 6: Mapping of IKK phosphorylation sites on IκBα.
Figure 7: Expression of IKKα accelerates IκBα degradation.
Figure 8: IKKα and NF-κB activation.
Figure 9: IKK is sensitive to PP2A.

Similar content being viewed by others

References

  1. Beg, A. A. & Baldwin, A. S. J The IκB proteins: multifunctional regulators of Rel/NF-κB transcription factors. Genes Dev. 7, 2064–2070 (1993).

    Article  CAS  Google Scholar 

  2. Gilmore, T. D. & Morin, P. J. The IκB proteins: members of a multifunctional family. Trends Genet. 9, 427–433 (1993).

    Article  CAS  Google Scholar 

  3. Brockman, J. A.et al. Coupling of a signal response domain in IκB to multiple pathways for NF-κB activation. Mol. Cell. Biol. 15, 2809–2818 (1995).

    Article  CAS  Google Scholar 

  4. Brown, K., Gerstberger, F. S., Carlson, L., Franzoso, G. & Siebenlist, U. Control of IκBα proteolysis by site-specific, signal-induced phosphorylation. Science 267, 1485–1491 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Traenckner, E. B.et al. Phosphorylation of human IκB on serines 32 and 36 controls IκB proteolysis and NF-κB activation in response to diverse stimuli. EMBO J. 14, 2876–2883 (1995).

    Article  CAS  Google Scholar 

  6. Whiteside, T.et al. N- and C-terminal sequences control degradation of MAD3/IκBα in response to inducers of NF-κB activity. Mol. Cell. Biol. 15, 5339–5345 (1995).

    Article  CAS  Google Scholar 

  7. DiDonato, J. A.et al. Mapping of the inducible IκB phosphorylation sites that signal its ubiquitination and degradation. Mol. Cell. Biol. 16, 1295–1304 (1996).

    Article  CAS  Google Scholar 

  8. Chen, Z.et al. Signal-induced site-specific phosphorylation targets IκB to the ubiquitin-proteasome pathway. Genes Dev. 9, 1586–1597 (1995).

    Article  CAS  Google Scholar 

  9. Scherer, D. C., Brockman, J., Chen, Z., Maniatis, T. & Ballard, D. Signal-induced degradation of IκBα requires site-specific ubiquitination. Proc. Natl Acad. Sci. USA 92, 11259–11263 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Hershko, A. & Cienchanover, A. The ubiquitin system for protein degradation. Annu. Rev. Biochem. 61, 761–807 (1992).

    Article  CAS  Google Scholar 

  11. Alkalay, I.et al. In vivo stimulation of IκB phosphorylation is not sufficient to activate NF-κB. Mol. Cell. Biol. 15, 1294–1301 (1995).

    Article  CAS  Google Scholar 

  12. DiDonato, J. A., Mercurio, F. & Karin, M. Phosphorylation of IκBα precedes but is not sufficient for its dissociation from NF-κB. Mol. Cell. Biol. 15, 1302–1311 (1995).

    Article  CAS  Google Scholar 

  13. Verma, I. M., Stevenson, J. K., Schwarz, E. M., Van Antwerp, D. & Miyamoto, S. Rel/NF-κB/IκB family: intimate tales of association and dissociation. Genes Dev. 9, 2723–2735 (1995).

    Article  CAS  Google Scholar 

  14. Sun, S. C., Maggirwar, S. B. & Harhaj, E. Activation of NF-κB by phsophatase inhibitors involves the phosphorylation of IκBα at phosphatase 2A-sensitive sites. J. Biol. Chem. 270, 18347–18351 (1995).

    Article  CAS  Google Scholar 

  15. Chen, Z. J., Parent, L. & Maniatis, T. Site-specific phosphorylation of IκBα by a novel ubiquitination-dependent protein kinase activity. Cell 84, 853–862 (1996).

    Article  CAS  Google Scholar 

  16. Haystead, C. M., Gregory, P., Sturgill, T. W. & Haystead, T. A. γ-Phosphate-linked ATP-Sepharose for the affinity purification of protein kinases. Rapid purification to homogeneity of skeletal muscle mitogen-activated protein kinase kinase. Eur. J. Biochem. 214, 459–467 (1993).

    Article  CAS  Google Scholar 

  17. Connely, M. A. & Marcu, K. B. CHUK, a new member of the helix-loop-helix and leucine zipper families of interacting proteins, contains a serine-threonine kinase catalytic domain. Cell. Mol. Biol. Res. 41, 537–549 (1995).

    Google Scholar 

  18. Baeuerle, P. A. & Henkel, T. Function and activation of NF-κB in the immune system. Annu. Rev. Immunol. 12, 141–179 (1994).

    Article  CAS  Google Scholar 

  19. Barnes, P. J. & Karin, M. Nuclear factor-κB—A pivotal transcription factor in chronic inflammatory diseases. New Engl. J. Med. 336, 1066–1071 (1997).

    Article  CAS  Google Scholar 

  20. Baeuerle, P. A. & Baltimore, D. NF-κB: ten years after. Cell 87, 13–20 (1996).

    Article  CAS  Google Scholar 

  21. Rothe, M., Wong, S. C., Henzel, W. J. & Goeddel, D. V. Anovel family of putative signal transducers associated with the cytoplamic domain of the 75 kDa tumor necrosis factor receptor. Cell 78, 681–692 (1994).

    Article  CAS  Google Scholar 

  22. Hsu, H., Xiong, J. & Goeddel, D. V. The TNF receptor 1-associated protein TRADD signals cell death and NF-κB activation. Cell 81, 495–504 (1995).

    Article  CAS  Google Scholar 

  23. Hsu, H., Shu, B. H., Pan, M. G. & Goeddel, D. V. TRADD–TRAF2 and TRADD–FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84, 299–308 (1996).

    Article  CAS  Google Scholar 

  24. Cao, Z., Xiong, J., Takeuchi, M., Kurama, T. & Goeddel, D. V. TRAF6 in a signal transducer for interleukin-1. Science 383, 443–446 (1996).

    CAS  Google Scholar 

  25. Cao, Z., Henzel, W. J. & Gao, X. IRAK: a kinase associated with the interleukin-1 receptor. Science 271, 1128–1131 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Liu, Z.-G., Hu, H., Goeddel, D. V. & Karin, M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis, while NF-κB activation prevents cell death. Cell 87, 565–576 (1996).

    Article  CAS  Google Scholar 

  27. Lee, F. S., Hagler, J., Chen, Z. J. & Maniatis, T. Activation of the IκBα kinase complex by MEKK1, a kinase of the JNK pathway. Cell 88, 213–222 (1997).

    Article  CAS  Google Scholar 

  28. Kallunki, T., Deng, T., Hibi, M. & Karin, M. c-Jun can recruit JNK to phosphorylate dimerization partners via specific docking interactions. Cell 87, 929–939 (1996).

    Article  CAS  Google Scholar 

  29. Thompson, J. E., Philips, R. J., Erdjument-Bromage, H., Tempst, P. & Ghosh, S. IκBβ regulates the persistent response in a biphasic activation of NF-κB. Cell 80, 573–582 (1995).

    Article  CAS  Google Scholar 

  30. Kallunki, T.et al. JNK2 ocntains a specificity-determining region responsible for efficient c-Jun binding and phosphorylation. Genes Dev. 8, 2996–3007 (1994).

    Article  CAS  Google Scholar 

  31. Helmberg, A., Auphan, N., Caelles, C. & Karin, M. Glucocorticoid-induced apoptosis of human leukemic cells is caused by the repressive function of the glucocorticoid receptor. EMBO J. 14, 452–460 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Thannhauser for help with peptide sequencing; C. Hoeger for the gift of γ-ATP–Sepharose; F. Mercurio and S. Ghosh for IκBβ plasmids; T. Haystead and L. Graves for discussion and for affinity resin; G. Walter for PP2A; M. Pasillas for oligonucleotide synthesis; G. Cadwell for technical assistance; and P. Alford for manuscript preparation. This work was supported by a Program Project grant from the National Cancer Institute and grants from the National Institutes of Environmental Health Sciences and the Human Frontier Science Project (HFSP). M.H., D.R. and E.Z. were supported by postdoctoral fellowships from HFSP, American Cancer Society (ACS) and ACS-California Division.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Karin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DiDonato, J., Hayakawa, M., Rothwarf, D. et al. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature 388, 548–554 (1997). https://doi.org/10.1038/41493

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/41493

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing