Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

p47 is a cofactor for p97-mediated membrane fusion

Abstract

At least two distinct ATPases, NSF and p97, are known to be involved in the heterotypic fusion of transport vesicles with their target membranes and the homotypic fusion of membrane compartments1. The NSF-mediated fusion pathway is the best characterized, many of the components having been identified and their functions analysed2,3,4,5,6,7. In contrast, none of the accessory proteins for the p97-mediated fusion pathway has been identified8,9,10. Now we have identified the first such component, a protein of relative molecular mass 47,000 (p47), which forms a tight, stoichiometric complex with cytosolic p97 (one trimer of p47 per hexamer of p97). It is essential for the p97-mediated regrowth of Golgi cisternae from mitotic Golgi fragments, a process restricted to animal cells11. As a homologue of p47 exists in budding yeast, this indicates that it might also be involved in other membrane fusion reactions catalysed by p97, such as karyogamy10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gel filtration of p47 and p97.
Figure 2: Association of p47 with p97.
Figure 3: Predicted sequence of p47 and the yeast homologue Shp1.
Figure 4: Negative staining of pure p97 and the p97/p47 complex.
Figure 5: Effect of p47 on p97-mediated cisternal regrowth from mitotic Golgi fragments.

Similar content being viewed by others

References

  1. Rothman, J. E. & Warren, G. Implications of the SNARE hypothesis for intracellular membrane topology and dynamics. Curr. Biol. 4, 220–233 (1994).

    Article  CAS  Google Scholar 

  2. Rothman, J. E. & Wieland, F. T. Protein sorting by transport vesicles. Science 272, 227–234 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Pryer, N. K., Wuestehube, L. J. & Schekman, R. Vesicle-mediated protein sorting. Annu. Rev. Biochem. 61, 471–516 (1992).

    Article  CAS  Google Scholar 

  4. Ferro-Novick, S. & Jahn, R. Vesicle fusion from yeast to man. Nature 370, 191–193 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Nuoffer, C. & Balch, W. E. GTPases—multifunctional molecular switches regulating vesicular traffic. Annu. Rev. Biochem. 63, 949–990 (1994).

    Article  CAS  Google Scholar 

  6. Schiavo, G., Rossetto, O. & Montecucco, C. Clostridial neurotoxins as tools to investigate the molecular events of neurotransmitter release. Sem. Cell Biol. 5, 221–229 (1994).

    Article  CAS  Google Scholar 

  7. Pfeffer, S. R. Transport vesicle docking: SNAREs and associates. Annu. Rev. Cell Dev. Biol. 12, 441–461 (1996).

    Article  CAS  Google Scholar 

  8. Rabouille, C., Levine, T. P., Peters, J. M. & Warren, G. An NSF-like ATPase, p97, and NSF mediate cisternal regrowth from mitotic Golgi fragment. Cell 82, 905–914 (1995).

    Article  CAS  Google Scholar 

  9. Acharya, U. et al. The formation of Golgi stacks from vesiculated Golgi membranes requires two distinct fusion events. Cell 82, 895–904 (1995).

    Article  CAS  Google Scholar 

  10. Latterich, M., Frohlich, K. U. & Schekman, R. Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes. Cell 82, 885–893 (1995).

    Article  CAS  Google Scholar 

  11. Warren, G. Membrane partitioning during cell division. Annu. Rev. Biochem. 62, 323–348 (1993).

    Article  CAS  Google Scholar 

  12. Peters, J.-M. et al. Ubiquitous soluble Mg2+-ATPase complex: A structural study. J. Mol. Biol. 223, 557–571 (1992).

    Article  CAS  Google Scholar 

  13. Peters, J. M. & Walsh, M. J. & Franke, W. W. An abundant and ubiquitous homo-oligomeric ring-shaped ATPase particle related to the putative vesicle fusion proteins, Sec18p and NSF. EMBO J. 9, 1757–1767 (1990).

    Article  CAS  Google Scholar 

  14. Confalonieri, F., Marsault, J. & Duguet, M. SAV, an archaebacterial gene with extensive homology to a family of highly conserved eukaryotic ATPases. J. Mol. Biol. 235, 396–401 (1994).

    Article  CAS  Google Scholar 

  15. Scherens, B., el Bakkoury, M., Vierendeels, F., Dubois, E. & Messenguy, F. Sequencing and functional analysis of a 32,560 bp segment on the left arm of yeast chromosome II. Identification of 26 open reading frames, including the KIP1 and SEC17 genes. Yeast 9, 1355–1371 (1993).

    Article  CAS  Google Scholar 

  16. Zhang, S., Guha, S. & Volkert, F. C. The Saccharomyces SHP1 gene, which encodes a regulator of phosphoprotein phosphatase 1 with differential effects on glycogen metabolism, meiotic differentiation, and mitotic cell cycle progression. Mol. Cell. Biol. 15, 2037–2050 (1995).

    Article  CAS  Google Scholar 

  17. Tu, J. L., Song, W. J. & Carlson, M. Protein phosphatase type I interacts with proteins required for meiosis and other cellular processes in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 4199–4206 (1996).

    Article  CAS  Google Scholar 

  18. Sutton, A., Lin, F. & Arndt, K. T. The SIT4 protein phosphatase is required in late G1 for progression into S phase. Cold Spring Harb. Symp. Quant. Biol. 56, 75–81 (1991).

    Article  CAS  Google Scholar 

  19. Frohlich, K.-U. et al. Yeast cell cycle protein CDC48p shows full-length homology to the mammalian protein VCP and is a member of a protein family involved in secretion, peroxisome formation, and gene expression. J. Cell Biol. 114, 443–453 (1991).

    Article  CAS  Google Scholar 

  20. Rabouille, C., Misteli, T., Watson, R. & Warren, G. Reassembly of Golgi stacks from mitotic Golgi fragments in a cell-free system. J. Cell Biol. 129, 605–618 (1995).

    Article  CAS  Google Scholar 

  21. Sutton, C. W. et al. Identification of myocardial proteins from two-dimensional gels by peptide mass fingerprinting. Electrophoresis 16, 308–316 (1995).

    Article  CAS  Google Scholar 

  22. Coull, J. M., Pappin, D. J., Mark, J., Aebersold, R. & Koster, H. Functionalized membrane supports for covalent protein microsequence analysis. Analyt. Biochem. 194, 110–120 (1991).

    Article  CAS  Google Scholar 

  23. Hunt, D. F., Yates, J. R., Shabanowitz, J., Winston, S. & Hauer, C. R. Protein sequencing by tandem mass spectrometry. Proc. Natl Acad. Sci. USA 83, 6233–6237 (1986).

    Article  ADS  CAS  Google Scholar 

  24. Saxton, W. O. Semper: distortion compensation, selective averaging, 3-D reconstruction, and transfer function correction in a highly programmable system. J. Struct. Biol. 116, 230–236 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Chappell, F. Barr, B. Svejstrup, B. Sönnichsen, M. Lowe, C. Fernandez, D. Shima, J. Shorter, N. Hui and A. Coffer for helpful comments and for reagents; G. Banting for the rat liver cDNA library; J.-M. Peters for monoclonal anti-p97 antibodies; G. Clark and A. Davies for DNA sequencing; and D. Rahman for protein sequencing. Special thanks go to N. Nakamura for advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Warren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondo, H., Rabouille, C., Newman, R. et al. p47 is a cofactor for p97-mediated membrane fusion. Nature 388, 75–78 (1997). https://doi.org/10.1038/40411

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/40411

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing