Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Essential role for diacylglycerol in protein transport from the yeast Golgi complex

Abstract

Yeast phosphatidylinositol transfer protein (Secl4p) is required for the production of secretory vesicles from the Golgi. This requirement can be relieved by inactivation of the cytosine 5'diphosphate (CDP)-choline pathway for phosphatidy1choline biosynthesis, indicating that Secl4p is an essential component of a regulatory pathway linking phospholipid metabolism with vesicle trafficking (the Secl4p pathway1-6). Sac1p (refs 7 and 8) is an integral membrane protein related to inositol-5-phosphatases such as synaptojanin9, a protein found in rat brain. Here we show that defects in Sac1p also relieve the requirement for Secl4p by altering phospholipid metabolism so as to expand the pool of diacylglycerol (DAG) in the Golgi. Moreover, although shortchain DAG improves secretory function in strains with a temperature-sensitive Secl4p, expression of diacylglycerol kinase from Escherichia coli further impairs it. The essential function of Sec14p may therefore be to maintain a sufficient pool of DAG in the Golgi to support the production of secretory vesicles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bankaitis, V. A., Malehorn, D. E., Emr, S. D. & Greene, R. The Saccharomyces cerevisiae SEC14 gene encodes a cytosolic factor that is required for transport of secretory proteins from the yeat Golgi complex. J. Cell Biol. 108, 1271–1281 (1989).

    Article  CAS  Google Scholar 

  2. Bankaitis, V. A., Aitken, J. R., Cleves, A. E. & Dowhan, W. An essential role for a phospholipid transfer in yeast Golgi fucntion. Nature 347, 561–562 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Cleves, A. E. et al. Mutations in the CDP-choline pathway for phospholipid biosynthesis bypass the requirement for an essential phospholipid transfer protein. Cell 64, 789–800(1991).

    Article  CAS  Google Scholar 

  4. McGee, T. P., Skinner, H. B., Whitters, E. A., Henry, S. A. & Bankaitis, V. A. A phosphatidylinositol transfer protein controls the phosphatidylcholine content of yeast Golgi membranes. J. Cell Biol. 124, 273–287 (1994).

    Article  CAS  Google Scholar 

  5. Skinner, H. B. et al. Phosphatidylinositol transfer protein stimulates yeast Golgii secretory function by inhibiting choline-phosphate cytidylyltransferase activity.Proc. Natl Acad. Sci. USA 92, 112–116 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Cleves, A. E., McGee, T. P. & Bankaitis, V. A. Phospholipid transfer proteins: a biological debut. Trends Cell Biol. 1, 30–34 (1991).

    Article  CAS  Google Scholar 

  7. Cleves, A. E., Novick, T. P. Bankaitis, V. A. Mutations in the SACI gene suppress defects in yeast Golgi and yeast actin function. J. Cell Biol. 109, 2939–2950 (1989).

    Article  CAS  Google Scholar 

  8. Whitters, E. A., Cleves, A. E., McGee, T. P., Skinner, H. B. & Bankaitis, V. A. SAC1p is an integral membrane protein that influences the cellular requirement for phospholipid transfer protein function and inositol in yeast. J. Cell Biol. 122, 79–94 (1992).

    Article  Google Scholar 

  9. McPherson, P. S. et al. A presynaptic inositol-5-phosphatase. Nature 379, 353–357 (1996).

    Article  ADS  Google Scholar 

  10. Fang, M. et al. Keslp shares homology with human oxysterol binding protein and participates in a novel regulatory pathway for yeast Golgi-derived transport vesicle biogenesis. EMBOJ. 15, 6447–6459 (1996).

    Article  CAS  Google Scholar 

  11. Becker, G. W. & Lester, R. L. Biosynthesis of phosphoinositol-containing sphingolipids from phosphatidylinositol by a membrane preparation from Saccharomyces cerevisiae. J. Bacteriol. 142, 747–754 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Puoti, A., Desponds, C. & Conzelmann, A. Biosynthesis of mannosylinositolphosphoceramide in Saccharomyces cerevisiae is dependent on genes controlling the flow of secretory vesicles from the endoplasmic reticulum to the Golgi. J. Cell Biol. 113, 515–525 (1991).

    Article  CAS  Google Scholar 

  13. Lester, R. L. & Dickson, R. C. Sphingolipids and inositol containing headgroups. Adv Lipid Res. 26, 253–271 (1993).

    CAS  PubMed  Google Scholar 

  14. Lightner, V. A., Bell, R. M. & Modrich, P. The DNA sequences encoding plsB and dgk loci of Escherichia coli. J. Biol. Chem. 258, 10856–10861 (1983).

    CAS  PubMed  Google Scholar 

  15. Ktistakis, N. T., Brown, H. A., Waters, M. G., Sternweis, P. C. & Roth, M. G. Evidence that phospholipase D mediates ADP ribosylation factor-dependent formation of Golgi coated vesicles. J. Cell Biol. 134, 295–306 (1996).

    Article  CAS  Google Scholar 

  16. Lipsky, N. G. & Pagano, R. E. Intracellular translocation of fluorescent sphingolipids in cultured fibroblasts: endogenously synthesized sphingomyelin and glucocerebroside analogues pass through the Golgi apparatus en route to the plasma membrane. J. Cll Biol. 100, 27–34 (1985).

    Article  CAS  Google Scholar 

  17. Ganong, B. R. & Bell, R. M. Transmembrane movement of phosphatidylglycerol and diacylglycerol sulfhydryl analogues. Biochemistry 23, 4977–4983 (1984).

    Article  CAS  Google Scholar 

  18. Mayinger, P., Bankaitis, V. A. & Meyer, D. I. Saclp mediates the adenosine triphosphate transport into yeast endoplasmic reticulum that is required for protein translocation. J. Cell Biol. 131, 1377–1386 (1995).

    Article  CAS  Google Scholar 

  19. Ito, H., Fukuda, Y., Murata, K. & Kimura, A. J. Bacteriol. 153, 163–168 (1983).

    CAS  Google Scholar 

  20. Rothstein, R. J. One step gene disruption in yeast. Methods Enzymol. 101, 202–211 (1983).

    Article  CAS  Google Scholar 

  21. Lopez, M. C. et al. A phosphatidylinositol/phosphatidylcholine transfer protein is required for differentiation of the dimorphic yeast Yarrowia lipolytica from the yeast to the mycelial form. J. Cell Biol. 124, 113–127 (1994).

    Article  Google Scholar 

  22. Orr-Weaver, T. L., Szostak, J. L. & Rothstein,R. J. Genetic applications of yeast transformation with linear and gapped plasmids. Methods Enzymol. 101, 202–211 (1983).

    Article  Google Scholar 

  23. Buttke, T. M. & Pyle, A. L. Effects of unsaturated fatty acid deprivation on neutral lipid synthesis in Saccharomnyces cerevisiae. J. Bacteriol. 152, 747–756 (1982).

  24. Steiner, M. R. & Lester, R. L. In vitro studies of phospholipid biosynthesis in Saccharomyces cerevisiae. Biochini. Biophys. Acta 260, 222–243 (1972).

    Article  CAS  Google Scholar 

  25. Salama, S. R., Cleves, A. E., Malehorn, D. E., Whitters, E. A. & Bankaitis, V. A. Cloning and characterization of Kluyveromyces lactis SEC14, a gene whose product stimulates Golgi secretory function in Saccharomyces cercvisiae. J. Bacteriol. 172, 4510–4521 (1990).

    Article  CAS  Google Scholar 

  26. Skinner, H. B., Alb, J. G. Jr, Whitters, E. A., Helmkamp, G. M. Jr & Bankaitis, V. A. Phospholipid transfer activity is relevant to but not sufficient for the essential function of the yeast SEC14 gene product. EMBO J. 12, 4775–4784 (1993).

    Article  CAS  Google Scholar 

  27. Giietz, R. D. & Sugino, A. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six base-pair restriction sites. Gene 74, 527–534 (1988).

    Article  Google Scholar 

  28. Lopes, J. M. & Henry, S. A. Interaction of trans and cis regulatory elements in the IN01 promoter of Saccharomyces cerevisiae. Nucleic Acids Res. 14, 3987–3994

  29. Alb, J. G. Jr, Gedvilaite, A., Cartee, R. T., Skinner, H. B. & Bankaitis, V. A. Mutant rat phosphatidylinositol/phosphatidylcholine transfer proteins specifically defective in phosphatidylinositol transfer: implications for the regulation of phospholipid transfer activity. Proc. Natl. Acad. USA 92, 8826–8830 (1995).

    Article  ADS  CAS  Google Scholar 

  30. Kagiwada, S. et al. The yeast BSD2-1 mutation influences both the requirement for phosphatidylinositol transfer protein function and derepression of phospholipid biosynthetic gene expression in yeast. Genetics 143, 685–697 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kearns, B., McGee, T., Mayinger, P. et al. Essential role for diacylglycerol in protein transport from the yeast Golgi complex. Nature 387, 101–105 (1997). https://doi.org/10.1038/387101a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/387101a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing