Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A potent and selective endogenous agonist for the µ-opiate receptor

Abstract

Peptides have been identified in mammalian brain that are considered to be endogenous agonists for the δ (enkephalins) and κ (dynorphins) opiate receptors, but none has been found to have any preference for the µ receptor1–3. Because morphine and other compounds that are clinically useful and open to abuse act primarily at the µ receptor4, it could be important to identify endogenous peptides specific for this site. Here we report the discovery and isolation from brain of such a peptide, endomorphin-1 (Tyr-Pro-Trp-Phe-NH2), which has a high affinity (Ki = 360 pM) and selectivity (4,000- and 15,000-fold preference over the δ and κ receptors) for the µ, receptor. This peptide is more effective than the µ-selective analogue DAMGO in vitroand it produces potent and prolonged analgesia in mice. A second peptide, endomorphin-2 (Tyr-Pro-Phe-Phe-NH2), which differs by one amino acid, was also isolated. The new peptides have the highest specificity and affinity for the µ receptor of any endogenous substance so far described and they maybe natural ligands for this receptor.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Akil, H. et al. Endogenous opioids: Biology and function. Annu. Rev. Neurosci. 7, 223–255 (1984).

    Article  CAS  Google Scholar 

  2. Evans, C. J., Hammond, D. L. & Frederickson, R. C. A. in The Opiate Receptors (ed. Pasternak, G. W.) 23–71 (Humana, Clifton, New Jersey, 1988).

    Book  Google Scholar 

  3. Corbett, A. D., Paterson, S. J. & Kosterlitz, H. W. in Opioids I (Handbook of Exp. Pharmacol.) Vol. 104/1 (ed. Herz, A.) 645–679 (Springer, New York, 1993).

    Book  Google Scholar 

  4. Reisine, T. & Pasternak, G. in Goodman and Oilman's The Pharmacological Basis of Therapeutics (eds Hardman, J. G. & Limbird, L. E.) 521–555 (McGraw-Hill, New York, 1996).

    Google Scholar 

  5. Erchegyi, J., Kastin, A. J. & Zadina, J. E. Isolation of a novel tetrapeptide with opiate and antiopiate activity from human cortex: Tyr-Pro-Trp-Gly-NH2 (Tyr-W-MIF-1). Peptides 13, 623–631 (1992).

    Article  CAS  Google Scholar 

  6. Hackler, L., Kastin, A. J., Erchegyi, J. & Zadina, J. E. Isolation of Tyr-W-MIF-1 from bovine hypothalami. Neuropeptides 24, 159–164 (1993).

    Article  CAS  Google Scholar 

  7. Erchegyi, J. et al. Structure-activity relationships of analogs of the endogenous brain peptides Tyr-MIF-1 and Tyr-W-MIF-1. Peptide Res. 6, 31–38 (1993).

    CAS  Google Scholar 

  8. Zadina, J. E., Kastin, A. J., Kenigs, V., Bruno, C. & Hackler, L. Prolonged analgesia after intracer-ebroventricular Tyr-W-MIF-1 (Tyr-Pro-Trp-Gly-NH2). Neurosci. Lett. 155, 220–222 (1993).

    Article  CAS  Google Scholar 

  9. Gergen, K. A., Zadina, J. E., Kastin, A. J. & Paul, D. Intrathecal Tyr-W-MIF-1 produces potent, naloxone-reversible analgesia modulated by α2-adrenoceptors. Eur. J. Pharmacol. 298, 235–239 (1996).

    Article  CAS  Google Scholar 

  10. Zadina, J. E., Paul, D., Gergen, K. A., Ge, L.-J., Hackler, L. & Kastin, A. J. Binding of Tyr-W-MIF-1 and related peptides to mu1 and mu2 opiate receptors. Neurosci. Lett. 215, 65–69 (1996).

    Article  CAS  Google Scholar 

  11. Gergen, K. A., Zadina, J. E. & Paul, D. Analgesic effects of Tyr-W-MIF-1: A mixed μ2-opioid receptor agonist/μ1-opioid receptor antagonist. Eur. J. Pharmacol. 316, 33–38 (1996).

    Article  CAS  Google Scholar 

  12. Zadina, J. E., Kastin, A. J., Ge, L.-J. & Hackler, L. Mu, delta and kappa opiate receptor binding of Tyr-MIF-1 and Tyr-W-MIF-1, its active fragments, and two potent analogs. Life Sci. 55, 461–466 (1994).

    Article  Google Scholar 

  13. Yamazaki, T., Ro, S., Goodman, M., Chung, N. N. & Schiller, P. W. A topochemical approach to explain morphiceptin bioactivity. J. Med. Chem. 36, 708–719 (1993).

    Article  CAS  Google Scholar 

  14. Wang, J.-X., Bray, A. M., Dipasquale, A. J., Maeji, N. J. & Geysen, H. M. Systematic study of substance P analogs. I. Evaluation of peptides synthesized by the multipin method for quantitative receptor binding assay. Int. J. Peptide Protein Res. 42, 384–391 (1993).

    Article  CAS  Google Scholar 

  15. Kyte, J. & Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982).

    Article  CAS  Google Scholar 

  16. Zadina, J. E., Kastin, A. J., Kersh, D. & Wyatt, A. Tyr-MIF-1 and hemorphin can act as opiate agonists as well as antagonists in the guinea pig ileum. Life Sci. 51, 869–885 (1992).

    Article  CAS  Google Scholar 

  17. Haley, T. J. & McCormick, W. G. Pharmacological effects produced by intracerebral injection of drugs in the conscious mouse. Br. J. Pharmacol. Chemother. 12, 12–15 (1957).

    Article  CAS  Google Scholar 

  18. Hylden, J. L. K. & Wilcox, G. L. Intrathecal morphine in mice: A new technique. Eur. J. Pharmacol. 67, 313–316 (1980).

    Article  CAS  Google Scholar 

  19. Buscher, H. H. et al. Evidence for analgesic activity of enkephalin in the mouse. Nature 261, 423–425 (1976).

    Article  ADS  CAS  Google Scholar 

  20. Schiller, P. W., Yam, C. F. & Prosmanne, J. Synthesis, opiate receptor affinity, and conformational parameters of [4-Tryptophan] enkephalin analogues. J. Med. Chem. 21, 1110–1116 (1978).

    Article  CAS  Google Scholar 

  21. Lenz, G. R., Evans, S. M., Walters, D. E. & Hopfinger, A. J. Opiates (Academic, Orlando, Florida, 1986).

    Google Scholar 

  22. Brantl, V. et al. Novel opioid peptides derived from hemoglobin: hemorphins. Eur. J. Pharmacol. 125, 309–310 (1986).

    Article  CAS  Google Scholar 

  23. Erchegyi, J., Kastin, A. J., Zadina, J. E. & Qiu, X.-D. Isolation of a heptapeptide Val-Val-Tyr-Pro-Trp-Thr-Gln (valorphin) with some opiate activity. Int. J. Peptide Protein Res. 39, 477–484 (1992).

    Article  CAS  Google Scholar 

  24. Glamsta, E.-L. et al. Isolation and characterization of a hemoglobin-derived opioid peptide from the human pituitary gland. Regul. Pept. 34, 169–179 (1991).

    Article  CAS  Google Scholar 

  25. Brantl, V. Novel opioid peptides derived from human β-casein: Human β-casomorphins. Eur. J. Pharmacol. 106, 213–214 (1984).

    Article  CAS  Google Scholar 

  26. Mansour, A., Fox, C. A., Akil, H. & Watson, S. J. Opioid-receptor mRNA expression in the rat CNS: Anatomical and functional implications. Trends Neurosci. 18, 22–29 (1995).

    Article  CAS  Google Scholar 

  27. Hamel, E. & Beaudet, A. Electron microscopic autoradiographic localization of opioid receptors in rat neostriatum. Nature 312, 155–157 (1984).

    Article  ADS  CAS  Google Scholar 

  28. Herkenham, M. in Volume Transmission in the Brain: Novel Mechanisms for Neural Transmission (eds Fuxe, K. & Agnati, L. F.) 63–87 (Raven, New York, 1991).

    Google Scholar 

  29. Elde, R. et al. in Diversity of Interacting Receptors (eds Abood, L. G. & Lajtha, A.) 390–404 (Acad. Sci., New York, 1995).

    Google Scholar 

  30. Yoburn, B. C., Cohen, A., Umans, J. G., Ling, G. F. & Inturrisi, C. E. The graded and quantal nature of opioid analgesia in the rat tailflick assay. Brain Res. 331, 327–336 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zadina, J., Hackler, L., Ge, LJ. et al. A potent and selective endogenous agonist for the µ-opiate receptor. Nature 386, 499–502 (1997). https://doi.org/10.1038/386499a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386499a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing