Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Functional coupling between ryanodine receptors and L-type calcium channels in neurons

Abstract

IN skeletal muscle, L-type Ca2+ channels act as voltage sensors to control ryanodine-sensitive Ca2+ channels in the sarcoplasmic reticulum1. It has recently been demonstrated that these ryanodine receptors generate a retrograde signal that modifies L-type Ca2+-channel activity2. Here we demonstrate a tight functional coupling between ryanodine receptors and L-type Ca2+ channel in neurons. In cerebellar granule cells, activation of the type-1 metabotropic glutamate receptor (mGluRl) induced a large, oscillating increase of the L-type Ba2+ current. Activation occurred independently of inositol 1,4,5-trisphosphate and classical protein kinases, but was mimicked by caffeine and blocked by ryanodine. The kinetics of this blockade were dependent on the frequency of Ba2+ current stimulation. Both mGluRl-and caffeine-induced increase in L-type Ca2+-channel activity persisted in inside-out membrane patches. In these excised patches, ryanodine suppressed both the mGluRl- and caffeine-activated L-type Ca2+ channels. These results demonstrate a novel mechanism for Ca2+-channel modulation in neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rios, E. & Brum, G. Nature 325, 717–720 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Nakai, J. et al. Nature 380, 72–75 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Manzoni, O. et al. Mol. Pharmacol. 38, 1–6 (1990).

    CAS  PubMed  Google Scholar 

  4. Chavis, P. et al. J. Neurosci. 15, 135–143 (1995).

    Article  CAS  Google Scholar 

  5. Chavis, P., Fagni, L., Bockaert, J. & Lansman, J. B. Neuropharmacology 34, 929–937 (1995).

    Article  CAS  Google Scholar 

  6. Chavis, P., Shinozaki, H., Bockaert, J. & Fagni, L. J. Neurosci. 14, 7067–7076 (1994).

    Article  CAS  Google Scholar 

  7. Lambert, R. C. & Feltz, A. J. Neurosci. 15, 6014–6022 (1995).

    Article  CAS  Google Scholar 

  8. Whitham, E. M., Challis, R. A. J. & Nahorski, S. R. Eur. J. Pharmacol. Mol. Sec. 206, 181–189 (1991).

    Article  CAS  Google Scholar 

  9. De Waard, M., Seager, M., Feltz, A. & Couraud, F. Neuron 9, 497–503 (1992).

    Article  CAS  Google Scholar 

  10. Hall, K. E., Browning, M. D., Dudek, E. M. & Macdonald, R. L. J. Neurosci. 15, 6069–6076 (1995).

    Article  CAS  Google Scholar 

  11. Toullec, D. et al. J. Biol. Chem. 266, 15771–15781 (1991).

    CAS  PubMed  Google Scholar 

  12. Fagni, L., Dumuis, A., Sebben, M. & Bockaert, J. Br. J. Pharmacol. 105, 973–979 (1992).

    Article  CAS  Google Scholar 

  13. Irving, A. J., Collingride, G. L. & Shofield, J. G. J. Physiol. (Lod.) 456, 667–680 (1992).

    Article  CAS  Google Scholar 

  14. Meszaros, L., Bak, J. & Chu, A. Nature 364, 76–79 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Linden, D. J., Smeyne, M. & Conno, J. A. Neuron 11, 1093–1100 (1993).

    Article  CAS  Google Scholar 

  16. Conquet, F. et al. Nature 372, 237–243 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Linden, D. J. Neuron 12, 457–472 (1994).

    Article  CAS  Google Scholar 

  18. Kohda, K., Inoue, T. & Mikoshiba, K. J. Neurophysiol. 74, 2184–2188 (1995).

    Article  CAS  Google Scholar 

  19. Van-Vliet, B. J. et al. J. Neurochem. 52, 1229–1239 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chavis, P., Fagni, L., Lansman, J. et al. Functional coupling between ryanodine receptors and L-type calcium channels in neurons. Nature 382, 719–722 (1996). https://doi.org/10.1038/382719a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382719a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing