Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Suppression of psychoactive effects of cocaine by active immunization

Abstract

COCAINE is a powerfully addictive substance and new strategies are needed to treat its abuse. Generating an active immunization1,2 to cocaine offers a means of blocking the actions of the drug by preventing it from entering the central nervous system, and should have fewer side effects than treatments based on manipulation of central neurotransmitter function. The design and preparation of a cocaine immunogen requires special regard for the stability of cocaine both free and as a haptenic determinant. Immunochemistry and a well defined behavioural model were brought together to address the problem of inactivation of the psychostimulant actions of cocaine. We report here that active immunization with a new, stable cocaine conjugate suppressed locomotor activity and stereotyped behaviour in rats induced by cocaine but not by amphetamine. Moreover, following acute injection of cocaine, levels of cocaine in the striatum and cerebellum of the immunized animals were lower than those of control animals. These results suggest that immunopharmacotherapy may be a promising means by which to explore new treatments for cocaine abuse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Spector, S., Berkowitz, B., Flynn, E. J. & Peskar, B. Pharmac. Rev. 25, 281–291 (1973).

    CAS  Google Scholar 

  2. Berkowitz, B. & Spector, S. Science 178, 1290–1292 (1972).

    Article  ADS  CAS  Google Scholar 

  3. Garrett, E. R. & Seyda, K. J. pharm. Sci. 72, 258–271 (1983).

    Article  CAS  Google Scholar 

  4. Stewart, D. J., Inaba, T. & Kalow, W. Clin. Pharmac. Ther. 25, 464–468 (1979).

    Article  CAS  Google Scholar 

  5. Cunningham, K. A. & Lakoski, J. M. Neuropsychopharmacology 3, 41–50 (1990).

    CAS  PubMed  Google Scholar 

  6. Matsubara, K., Kagawa, M. & Fukui, Y. Forensic Sci. Int. 26, 169–180 (1984).

    Article  CAS  Google Scholar 

  7. Taussig, M. J. Curr. Top. Microbiol. Immun. 60, 125–174 (1973).

    Article  CAS  Google Scholar 

  8. Misra, A. L. et al. Res. Commun. Chem. Path. Pharmac. 13, 579–584 (1976).

    CAS  Google Scholar 

  9. Bagasra, O., Forman, L. J., Howeedy, A. & Whittle, P. Immunopharmacology 23, 173–179 (1992).

    Article  CAS  Google Scholar 

  10. Gallacher, G. Immunopharmacology 27, 79–81 (1994).

    Article  CAS  Google Scholar 

  11. Kelly, P. H. & Iversen, S. D. Eur. J. Pharmac. 40, 45–56 (1976).

    Article  CAS  Google Scholar 

  12. Lyon, M. & Robbins, T. W. in Current Developments in Psychopharmacology Vol. 2, 89–163 (eds Essman, W. & Valzelli, L.) (Spectrum, New York, 1975).

    Google Scholar 

  13. Minden, P. & Farr, R. S. in Handbook of Experimental Immunology (ed. Weir, D. M.) 463–492 (Davis Co., Philadelphia, 1967).

    Google Scholar 

  14. Steward, M. W. & Steensgaard, J. Antibody Affinity: Thermodynamic Aspects and Biological Significance (CRC Press, Boca Raton, FL, 1983).

    Google Scholar 

  15. Eisen, H. N. (ed.) in Methods in Medical Research 106–114 (Year Book Medical Publishers, Chicago, 1964).

  16. Hill, J. H., Wainer, B. H., Fitch, F. W. & Rothberg, R. M. Clin. exp. Immun. 15, 213–224 (1973).

    CAS  PubMed  Google Scholar 

  17. Benuck, M., Lajtha, A. & Reith, M. E. A. J. Pharmac. exp. Ther. 243, 144–149 (1987).

    CAS  Google Scholar 

  18. Ritz, M. C., Lamb, R. J., Goldberg, S. R. & Kuhar, M. J. Science 237, 1219–1223 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Fischman, M., Schuster, C. R. & Hitano, Y. Pharmac. Biochem. Behav. 18, 123–127 (1983).

    Article  CAS  Google Scholar 

  20. Javaid, J., Fischman, M. W., Schuster, C. R., Dekirmenjian, H. & Davis, J. M. Science 202, 227–228 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Landry, D. W., Zhao, K., Yang, G. X.-Q., Glickman, M. & Georgiadis, T. M. Science 259, 1899–1901 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Gold, L. H. & Koob, G. F. Pharmac. Biochem. Behav. 29, 645–648 (1988).

    Article  CAS  Google Scholar 

  23. Fray, P. J. et al. Psychopharmacology 69, 253–259 (1980).

    Article  CAS  Google Scholar 

  24. Robbins, T. W. in Handbook of Psychopharmacology (eds Iversen, L., Iversen, S. & Snyder, S.) 37–82 (Plenum, New York, 1977).

    Book  Google Scholar 

  25. Kullback, S. Information Theory and Statistics (Dover, New York, 1968).

    MATH  Google Scholar 

  26. Kelly, P. H., Seviour, P. W. & Iversen, S. D. Brain Res. 94, 507–522 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrera, M., Ashley, J., Parsons, L. et al. Suppression of psychoactive effects of cocaine by active immunization. Nature 378, 727–730 (1995). https://doi.org/10.1038/378727a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378727a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing