Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor ε1 subunit

Abstract

THE NMDA (TV-methyl-D-aspartate) receptor channel is important for synaptic plasticity, which is thought to underlie learning, memory and development1, 2. The NMDA receptor channel is formed by at least two members of the glutamate receptor (GluR) channel subunit families, the GluRε (NR2) and GiuRζ (NR1) sub-unit families3–8. The four ε subunits are distinct in distribution, properties and regulation5–14. On the basis of the Mg2+ sensitivity and expression patterns, we have proposed that the εi (NR2A) and ε2 (NR2B) subunits play a role in synaptic plasticity6, 14. Here we show that targeted disruption of the mouse εl subunit gene resulted in significant reduction of the NMDA receptor channel current and long-term potentiation at the hippocampal CA1 synapses. The mutant mice also showed a moderate deficiency in spatial learning. These results support the notion that the NMDA receptor channel-dependent synaptic plasticity is the cellular basis of certain forms of learning.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bliss, T. V. P. & Collingridge, G. L. Nature 361, 31–39 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Morris, R. G. M., Anderson, E., Lynch, G. S. & Baudry, M. Nature 319, 774–776 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Moriyoshi, K. et al. Nature 354, 31–37 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Yamazaki, M. et al. FEBS Lett. 300, 39–45 (1992).

    Article  CAS  Google Scholar 

  5. Meguro, H. et al. Nature 357, 70–74 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Kutsuwada, T. et al. Nature 358, 36–41 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Monyer, H. et al. Science 256, 1217–1221 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Ikeda, K. et al. FEBS Lett. 313, 34–38 (1992).

    Article  CAS  Google Scholar 

  9. Watanabe, M., Inoue, Y., Sakimura, K. & Mishina, M. NeuroReport 3, 1138–1140 (1992).

    Article  CAS  Google Scholar 

  10. Watanabe, M., Inoue, Y., Sakimura, K. & Mishina, M. J. comp. Neurol. 338, 337–390 (1993).

    Article  Google Scholar 

  11. Mori, H., Yamakura, T., Masaki, H. & Mishina, M. NeuroReport 4, 519–522 (1993).

    Article  CAS  Google Scholar 

  12. Ishii, T. et al. J. biol. Chem. 268, 2836–2843 (1993).

    CAS  Google Scholar 

  13. Monyer, H., Burnashev, N., Laurie, D. J., Sakmann, B. & Seeburg, P. H. Neuron 12, 529–540 (1994).

    Article  CAS  Google Scholar 

  14. Mishina, M. et al. Ann. N.Y. Acad. Sci. 707, 136–152 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Yagi, T. et al. Analyt. Biochem. 214, 70–76 (1993).

    Article  CAS  Google Scholar 

  16. Li, Y. et al. Cell 76, 427–437 (1994).

    Article  CAS  Google Scholar 

  17. Abeliovich, A. et al. Cell 75, 1253–1262 (1993).

    Article  CAS  Google Scholar 

  18. Morris, R. G. M. Learn. Motiv. 12, 239–260 (1981).

    Article  Google Scholar 

  19. Silva, A. J., Stevens, C. F., Tonegawa, S. & Wang, Y. Science 257, 201–206 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Davis, S., Butcher, S. P. & Morris, R. G. M. J. Neurosci. 12, 21–34 (1992).

    Article  CAS  Google Scholar 

  21. Silva, A. J., Paylor, R., Wehner, J. M. & Tonegawa, S. Science 257, 206–211 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Grant, S. G. N. et al. Science 258, 1903–1910 (1992).

    Article  ADS  CAS  Google Scholar 

  23. Umemori, H., Sato, S., Yagi, T., Aizawa, S. & Yamamoto, T. Nature 367, 572–576 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Abeliovich, A. et al. Cell 75, 1263–1271 (1993).

    Article  CAS  Google Scholar 

  25. Yagi, T. et al. Analyt. Biochem. 214, 77–86 (1993).

    Article  CAS  Google Scholar 

  26. Araki, K. et al. Biochem. biophys. Res. Commun. 197, 1267–1276 (1993).

    Article  CAS  Google Scholar 

  27. Ito, I. & Sugiyama, H. NeuroReport 2, 333–336 (1991).

    Article  CAS  Google Scholar 

  28. Blanton, M. G., Lo Turco, J. J. & Kriegstein, A. R. J. Neurosci. Meth. 30, 203–210 (1989).

    Article  CAS  Google Scholar 

  29. Coleman, P. A. & Miller, R. F. J. Neurophysiol. 61, 218–230 (1989).

    Article  CAS  Google Scholar 

  30. Zhang, Y., Saito, H. & Nishiyama, N. Brain Res. 658, 127–134 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakimura, K., Kutsuwada, T., Ito, I. et al. Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor ε1 subunit. Nature 373, 151–155 (1995). https://doi.org/10.1038/373151a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/373151a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing