Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Retinoblastoma protein switches the E2F site from positive to negative element

Abstract

ORIGINALLY E2F sites were identified as elements in the promoters of adenovirus early genes that are necessary for activation of these genes by the early protein E1a (ref. 1). E2F promoter elements have been shown to be important for transcriptional activation of several genes critical for progression through the cell cycle24. During the G1 phase of the cell cycle, the E2F protein forms a complex with the cell-cycle protein Rb (ref. 5) and it has been suggested that this binding of Rb to E2F inactivates E2F (ref. 5). Here we show that Rb-E2F is an active complex that, when bound to the E2F site, inhibits the activity of other promoter elements and thus silences transcription. We propose that the ability of this complex to inhibit transcription is integral to the function of Rb and provide evidence that E2F is a positive element in the absence of an active form of Rb. It has been shown that binding of Rb to E2F depends on the phosphorylation state of Rb (only the underphosphorylated form binds)5 and that the phosphorylation state of Rb changes during progression through the cell cycle6,7. We therefore suggest that the E2F site alternates between a positive and negative element with the phosphorylation/dephosphorylation cycle of Rb. This cyclic activity may be responsible for activating and then inhibiting genes during the cell cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kovesdi, I., Reichel, R. & Nevins, J. R. Proc. natn. Acad. Sci. U.S.A. 84, 2180–2184 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Blake, M. C. & Azizkhan, J. C. Molec. cell. Biol. 9, 4994–5002 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Thalmeier, K., Synovzik, H., Mertz, R., Winnacker, E. L. & Lipp, M. Genes Dev. 3, 527–536 (1989).

    Article  CAS  Google Scholar 

  4. Mudryj, M., Hiebert, S. W. & Nevins, J. R. EMBO J. 9, 2179–2184 (1990).

    Article  CAS  Google Scholar 

  5. Chellappan, S. P., Hiebert, S., Mudryi, M., Horowitz, J. M. & Nevins, J. R. Cell 65, 1053–1061 (1991).

    Article  CAS  Google Scholar 

  6. Buchkovich, K., Duffy, L. A. & Harlow, E. Cell 58, 1097–1105 (1989).

    Article  CAS  Google Scholar 

  7. Ludlow, J. W., Shon, J., Pipas, J. M., Livingston, D. M. & DeCaprio, J. A. Cell 60, 387–396 (1990).

    Article  CAS  Google Scholar 

  8. Hearing, P. & Shenk, T. Cell 33, 695–703 (1983).

    Article  CAS  Google Scholar 

  9. Hiebert, S. W., Blake, M., Azizkhan, J. & Nevins, J. R. J. Virol. 65, 3547–3552 (1991).

    Article  CAS  Google Scholar 

  10. Bagchi, S., Raychaudhuri, P. & Nevins, J. R. Cell 62, 659–669 (1990).

    Article  CAS  Google Scholar 

  11. Chittenden, T., Livingston, D. M. & Kaelin, W. G. Cell 65, 1073–1082 (1991).

    Article  CAS  Google Scholar 

  12. Robbins, P. D., Horowitz, J. M. & Mulligan, R. C. Nature 346, 668–671 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Weintraub, S. J. & Dean, D. C. Molec. cell. Biol. 12, 512–517 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yee, A. S., Reichel, R., Kovesdi, I. & Nevins, J. R. EMBO J. 6, 2061–2068 (1987).

    Article  CAS  Google Scholar 

  15. Rosen, G. D., Birkenmeier, T. M. & Dean, D. C. Proc. natn. Acad. Sci. U.S.A. 88, 4094–4098 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Shew, J. Y. et al. Proc. natn. Acad. Sci. U.S.A. 87, 6–10 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Takahashi, R. et al. Proc. natn. Acad. Sci. U.S.A. 88, 5257–5261 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Scheffner, M., Munger, K., Byrne, J. C. & Howley, P. M. Proc. natn. Acad. Sci. U.S.A. 88, 5523–5527 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Bernards, R. et al. Proc. natn. Acad. Sci. U.S.A. 86, 6474–6478 (1989).

    Article  ADS  CAS  Google Scholar 

  20. Whyte, P. et al. Nature 334, 124–129 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weintraub, S., Prater, C. & Dean, D. Retinoblastoma protein switches the E2F site from positive to negative element. Nature 358, 259–261 (1992). https://doi.org/10.1038/358259a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/358259a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing