Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular physiology of p2x receptors and atp signalling at synapses

Key Points

  • There are two broad classes of ATP receptor in the nervous system: P2X and P2Y receptors. P2X receptors, a group of cation-selective ion channels, are the focus of this review. There are seven different P2X subunits, each of which has two transmembrane domains inserted in the plasma membrane such that both the amino and the carboxyl termini are located intracellularly.

  • The ATP-binding site of P2X receptors seems to be located near the transmembrane domains and is thought to involve several lysine residues. The second transmembrane domain of P2X subunits forms the channel pore, which is permeable to different cations including calcium. Although their exact subunit stochiometry is controversial, most of the evidence supports the idea that P2X receptors assemble as trimers.

  • P2X receptors are ubiquitously expressed in the nervous system. Indeed, they are present both pre- and postsynaptically. Activation of presynaptic P2X receptors can modulate release of several neurotransmitters at a variety of synapses. Postsynaptically, ATP can elicit excitatory synaptic currents in some cells, but they seem to contribute to a small part of the total excitatory drive.

  • P2X receptors have been implicated in processing pain information. ATP released from damaged tissue can act directly on P2X receptors present in the primary sensory afferent. In turn, the terminals of sensory neurons release ATP onto dorsal horn cells. In addition, presynaptic receptors on the terminals of the sensory neuron facilitate the release of glutamate onto dorsal horn cells, and presynaptic P2X receptors on inhibitory nerve terminals also facilitate the release of GABA and glycine. The balance between inhibitory and excitatory effects contributes to the spinal processing of painful information.

Abstract

ATP is found in every cell, where it is a major source of energy. But in the nervous system, ATP also has additional actions, which include its role in fast synaptic transmission and modulation. Here I discuss the 'fast' actions of ATP at synapses, the properties of the receptors that are activated by ATP and the physiology of ATP signalling, with emphasis on its role in pain processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fast and slow responses to ATP.
Figure 2: A representation of P2X subunit structure and function.
Figure 3: Role of fast ATP signalling in detecting and processing of pain.

Similar content being viewed by others

References

  1. Holton, F. A. & Holton, P. The capillary dilator substances in dry powders of spinal roots; a possible role of adenosine triphosphate in chemical transmission from nerve endings. J. Physiol. (Lond.) 126, 124–140 ( 1954).

    Article  CAS  Google Scholar 

  2. Holton, P. The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. J. Physiol. (Lond.) 145, 494– 504 (1959).

    Article  CAS  Google Scholar 

  3. Burnstock, G. Neural nomenclature. Nature 229, 282– 283 (1971).References 1 3 are early papers that focused attention on ATP release from neurons.

    Article  CAS  PubMed  Google Scholar 

  4. North, R. A. & Barnard, E. A. Nucleotide receptors. Curr. Opin. Neurobiol. 7, 346–357 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Zhou, X. & Galligan, J. J. P2X purinoceptors in cultured myenteric neurons of guinea-pig small intestine. J. Physiol. (Lond.) 496, 719–729 ( 1996).

    Article  CAS  Google Scholar 

  6. Robertson, S. J. & Edwards, F. A. ATP and glutamate are released from separate neurons in the rat medial habenula nucleus: frequency dependence and adenosine-mediated inhibition of release. J. Physiol. (Lond.) 508, 691–701 ( 1998).

    Article  CAS  Google Scholar 

  7. Stevens, B. & Fields, R. D. Response of Schwann cells to action potentials in development. Science 287, 2267–2271 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Cotrina, M. L., Lin, J. H., Lopez-Garcia, J. C., Naus, C. C. & Nedergaard, M. ATP-mediated glia signalling . J. Neurosci. 20, 2835– 2844 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guthrie, P. B. et al. ATP released from astrocytes mediates glial calcium waves . J. Neurosci. 19, 520– 528 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Powell, A. D., Teschemacher, A. G. & Seward, E. P. P2Y purinoceptors inhibit exocytosis in adrenal chromaffin cells via modulation of voltage-operated calcium channels. J. Neurosci. 20, 606–616 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Currie, K. P. & Fox, A. P. ATP serves as a negative feedback inhibitor of voltage-gated Ca2+ channel currents in cultured bovine adrenal chromaffin cells. Neuron 16, 1027–1036 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Hollins, B. & Ikeda, S. R. Heterologous Expression of a P2X-purinoceptor in rat chromaffin cells detects vesicular ATP release. J. Neurophysiol. 78, 3069–3076 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  13. Burnashev, N. Calcium permeability of ligand-gated channels. Cell Calcium 24, 325–332 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Berridge, M. J. Neuronal calcium signaling. Neuron 21, 13 –26 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Zimmermann, H. Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch. Pharmacol. 362, 299–309 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Torres, G., Egan, T. & Voigt, M. Hetero-oligomeric assembly of P2X receptor subunits. Specificities exist with regard to possible partners. J. Biol. Chem. 274, 6653–6659 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Unwin, N. Acetylcholine receptor channel imaged in the open state. Nature 373, 37–43 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  18. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Chang, G., Spencer, R. H., Lee, A. T., Barclay, M. T. & Rees, D. C. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282, 2220–2226 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  20. North, R. A. & Surprenant, A. Pharmacology of cloned P2X receptors . Annu. Rev. Pharmacol. Toxicol 40, 563– 580 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Newbolt, A. et al. Membrane topology of an ATP-gated ion channel (P2X receptor) . J. Biol. Chem. 273, 15177– 15182 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Torres, G. E., Egan, T. M. & Voigt, M. M. N-Linked glycosylation is essential for the functional expression of the recombinant P2X2 receptor. Biochemistry 37, 14845–14851 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Boue-Grabot, E., Archambault, V. & Seguela, P. A Protein kinase C Site highly conserved in P2X subunits controls the desensitization kinetics of P2X2 ATP-gated channels . J. Biol. Chem. 275, 10190– 10195 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Zhou, Z., Monsma, L. R. & Hume, R. I. Identification of a site that modifies desensitization of P2X2 receptors. Biochem. Biophys. Res. Commun. 252, 541–546 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Kim, M., Yoo, O. J. & Choe, S. Molecular assembly of the extracellular domain of P2X 2, an ATP-gated ion channel. Biochem. Biophys. Res. Commun. 240, 618–622 ( 1997).The extracellular domain of P2X 2 subunits was shown to assemble as tetramer.

    Article  CAS  PubMed  Google Scholar 

  26. Clarke, C. E., Benham, C. D., Bridges, A., George, A. R. & Meadows, H. J. Mutation of histidine 286 of the human P2X4 purinoceptor removes extracellular pH sensitivity . J. Physiol. (Lond.) 523, 697– 703 (2000).

    Article  CAS  Google Scholar 

  27. Nakazawa, K. & Ohno, Y. Neighboring glycine residues are essential for P2X2 receptor/channel function. Eur. J. Pharmacol. 370, R5–R6 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  28. Rettinger, J., Aschrafi, A. & Schmalzing, G. Roles of individual-glycans for ATP potency and expression of the rat P2X1 receptor. J. Biol. Chem. 275, 33542–33547 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Ennion, S., Hagan, S. & Evans, R. J. The role of positively charged amino acids in ATP recognition by human P2X1 receptors. J. Biol. Chem. 275, 29361–29367 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Jiang, L.-H., Rassendren, F., Surprenant, A. & North, R. A. Identification of amino acid residues contributing to the ATP binding site of a P2X receptor. J. Biol. Chem. 275, 34190 –34196 (2000).References 29 and 30 identify residues that affect ATP potency and that probably contribute to the ATP-binding site.

    Article  CAS  PubMed  Google Scholar 

  31. Buell, G., Lewis, C., Collo, G., North, R. A. & Surprenant, A. An antagonist-insensitive P2X receptor expressed in epithelia and brain. EMBO J. 15, 55– 62 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Evans, R. J. et al. Ionic permeability of, and divalent cation effects on, two ATP-gated cation channels (P2X receptors) expressed in mammalian cells. J. Physiol. (Lond.) 497, 413–422 (1996).

    Article  CAS  Google Scholar 

  33. Koshimizu, T. et al. Characterization of calcium signaling by purinergic receptor-channels expressed in excitable cells. Mol. Pharmacol. 58, 936–945 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Edwards, F. A., Robertson, S. J. & Gibb, A. J. Properties of ATP receptor-mediated synaptic transmission in the rat medial habenula. Neuropharmacology 36, 1253–1268 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Rogers, M. & Dani, J. A. Comparison of quantitative calcium flux through NMDA, ATP, and ACh receptor channels. Biophys. J. 68, 501–506 ( 1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rogers, M., Colquhoun, L. M., Patrick, J. W. & Dani, J. A. Calcium flux through predominantly independent purinergic ATP and nicotinic acetylcholine receptors. J. Neurophysiol. 77, 1407–1417 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Rassendren, F., Buell, G., Newbolt, A., North, R. A. & Surprenant, A. Identification of amino acid residues contributing to the pore of a P2X receptor. EMBO J. 16, 3446–3454 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Egan, T. M., Haines, W. R. & Voigt, M. M. A domain contributing to the ion channel of ATP-gated P2X2 receptors identified by the substituted cysteine accessibility method. J. Neurosci. 18, 2350– 2359 (1998).References 37 and 38 show that transmembrane domain 2 lines the pore of P2X 2 subunits.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Surprenant, A., Rassendren, F., Kawashima, E., North, R. A. & Buell, G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272, 735–738 (1996). Cloning and expression of the P2X 7 subunit, and the demonstration of its ability to change its permeability.

    Article  CAS  PubMed  Google Scholar 

  40. Khakh, B. S., Proctor, W. R., Dunwiddie, T. V., Labarca, C. & Lester, H. A. Allosteric control of gating and kinetics at P2X4 receptor channels. J. Neurosci. 19, 7289–7299 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Khakh, B., Bao, X., Labarca, C. & Lester, H. Neuronal P2X receptor-transmitter-gated cation channels change their ion selectivity in seconds. Nature Neurosci. 2, 322–330 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  42. Virginio, C., MacKenzie, A., Rassendren, F. A., North, R. A. & Surprenant, A. Pore dilation of neuronal P2X receptor channels. Nature Neurosci. 2, 315 –321 (1999).References 41 and 42 show that neuronal P2X receptors change their permeability, and that transmembrane domain 2 contributes to this phenomenon.

    Article  CAS  PubMed  Google Scholar 

  43. Virginio, C., MacKenzie, A., North, R. A. & Surprenant, A. Kinetics of cell lysis, dye uptake and permeability changes in cells expressing the rat P2X7 receptor. J. Physiol. (Lond.) 519, 335–346 (1999).

    Article  CAS  Google Scholar 

  44. Khakh, B. S. & Lester, H. A. Dynamic selectivity filters in ion channels. Neuron 23, 653– 658 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Surprenant, A., Schneider, D. A., Wilson, H. L., Galligan, J. J. & North, R. A. Functional properties of heteromeric P2X1/5 receptors expressed in HEK cells and excitatory junction potentials in guinea-pig submucosal arterioles. J. Auton. Nerv. Syst. 81, 249–263 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Rassendren, F. et al. The permeabilizing ATP receptor, P2X7. Cloning and expression of a human cDNA. J. Biol. Chem. 272, 5482–5786 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Nakazawa, K., Fujimori, K., Takanaka, A. & Inoue, K. Comparison of adenosine triphosphate- and nicotine-activated inward currents in rat phaeochromocytoma cells. J. Physiol. (Lond.) 434, 647–660 (1991).

    Article  CAS  Google Scholar 

  48. Cohen, B. N., Labarca, C., Davidson, N. & Lester, H. A. Mutations in M2 alter the selectivity of the mouse nicotinic acetylcholine receptor for organic and alkali metal cations. J. Gen. Physiol. 100, 373–400 ( 1992).

    Article  CAS  PubMed  Google Scholar 

  49. Brandle, U. et al. Desensitization of the P2X2 receptor controlled by alternative splicing. FEBS Lett. 404, 294–298 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Simon, J. et al. Localization and functional expression of splice variants of the P2X2 receptor. Mol. Pharmacol. 52, 237–248 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Smith, F. M., Humphrey, P. P. A. & Murrell-Lagnado, R. D. Identification of amino acids within the P2X2 receptor C-terminus that regulate desensitization. J. Physiol. (Lond.) 520, 91–99 (1999).

    Article  CAS  Google Scholar 

  52. Werner, P., Seward, E. P., Buell, G. N. & North, R. A. Domains of P2X receptors involved in desensitization. Proc. Natl Acad. Sci. USA 93, 15485– 15490 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, G. H. et al. The distribution of P2X receptor clusters on individual neurons in sympathetic ganglia and their redistribution on agonist activation. J. Biol. Chem. 275, 29107–29112 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Nicke, A. et al. P2X1 and P2X3 receptors form stable trimers: a novel structural motif of ligand-gated ion channels. EMBO J. 17, 3016–3028 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Torres, G. E., Egan, T. M. & Voigt, M. M. Identification of a domain involved in ATP-gated ionotropic receptor subunit assembly. J. Biol. Chem. 274, 22359–22365 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Stoop, R. et al. Contribution of individual subunits to the multimeric P2X 2 receptor: estimates based on methanethiosulfonate block at T336C. Mol. Pharmacol. 56, 973–981 (1999).References 54 and 56 show that P2X receptors might be trimers.

    Article  CAS  PubMed  Google Scholar 

  57. Ding, S. & Sachs, F. Single channel properties of P2X 2 purinoceptors. J. Gen. Physiol. 113, 695–720 (1999).The first detailed study of the single-channel behaviour of P2X 2 receptors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhou, Z. & Hume, R. I. Two mechanisms for inward rectification of current flow through the purinoceptor P2X2 class of ATP-gated channels. J. Physiol. (Lond.) 507, 353– 364 (1998).

    Article  CAS  Google Scholar 

  59. Ding, S. & Sachs, F. Ion permeation and block of P2X 2 purinoceptors: single channel recordings. J. Membr. Biol. 172, 215–223 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  60. Hackos, D. H. & Korenbrot, J. I. Divalent cation selectivity is a function of gating in native and recombinant cyclic-nucleotide-gated ion channels from retinal photoreceptors. J. Gen. Physiol. 113, 799–817 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mulryan, K. et al. Reduced vas deferens contraction and male infertility in mice lacking P2X1 receptors. Nature 403, 86–89 (2000).The first knockout of a P2X subunit.

    Article  CAS  PubMed  Google Scholar 

  62. Rubio, M. E. & Soto, F. Distinct localisation of P2X receptors at excitatory postsynaptic specializations. J. Neurosci. 21, 641–653 (2001). Detailed localization studies of neuronal P2X receptors in dendrites shows a pattern different from that of glutamate receptors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Collo, G. et al. Cloning of P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels . J. Neurosci. 16, 2495– 2507 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Atkinson, L., Batten, T. F. & Deuchars, J. P2X2 receptor immunoreactivity in the dorsal vagal complex and area postrema of the rat. Neuroscience 99, 683–696 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Krishtal, O. A., Marchenko, S. M. & Pidoplichko, V. I. Receptor for ATP in the membrane of mammalian sensory neurons. Neurosci. Lett. 31, 41– 45 (1983).

    Article  Google Scholar 

  66. Jahr, C. E. & Jessell, T. M. ATP excites a subpopulation of rat dorsal horn neurons. Nature 304, 730 –733 (1983).

    Article  CAS  PubMed  Google Scholar 

  67. Grubb, B. & Evans, R. Characterization of cultured dorsal root ganglion neuron P2X receptors. Eur. J. Neurosci. 11, 149–154 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Lewis, C. et al. Co-expression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature 377, 432–435 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  69. Virginio, C., North, R. A. & Surprenant, A. Calcium permeability and block at homomeric and heteromeric P2X2 and P2X3 receptors, and P2X receptors in rat nodose neurons. J. Physiol. (Lond.) 510, 27– 35 (1998).

    Article  CAS  Google Scholar 

  70. Virginio, C., Robertson, G., Surprenant, A. & North, R. A. Trinitrophenyl-substituted nucleotides are potent antagonists selective for P2X1, P2X3, and heteromeric P2X2/3 receptors . Mol. Pharmacol. 53, 969– 973 (1998).

    CAS  PubMed  Google Scholar 

  71. Vulchanova, L. et al. Differential distribution of two ATP-gated channels (P2X receptors) determined by immunocytochemistry. Proc. Natl Acad. Sci. USA 93, 8063–8067 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Vulchanova, L. et al. Immunohistochemical study of the P2X2 and P2X 3 receptor subunits in rat and monkey sensory neurons and their central terminals. Neuropharmacology 36, 1229– 1242 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Chen, C. C. et al. A P2X purinoceptor expressed by a subset of sensory neurons . Nature 377, 428–431 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. Le, K. T., Babinski, K. & Séguéla, P. Central P2X4 and P2X6 channel subunits coassemble into a novel heteromeric ATP receptor. J. Neurosci. 18, 7152–7159 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Patel, M., Khakh, B. S. & Henderson, G. Characterisation of P2X receptors in trigeminal mesecephalic nucleus. Neuropharmacology 40, 96– 105 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Cook, S. P., Vulchanova, L., Hargreaves, K. M., Elde, R. & McCleskey, E. W. Distinct ATP receptors on pain-sensing and stretch-sensing neurons. Nature 387, 505–508 (1997).The first detailed study of P2X receptors on identified pain-sensing neurons.

    Article  CAS  PubMed  Google Scholar 

  77. Khakh, B. S., Humphrey, P. P. & Henderson, G. ATP-gated cation channels (P2X purinoceptors) in trigeminal mesencephalic nucleus neurons of the rat. J. Physiol. (Lond.) 498, 709–715 (1997).

    Article  CAS  Google Scholar 

  78. Torres, G. E., Haines, W. R., Egan, T. M. & Voigt, M. M. Co-expression of P2X1 and P2X5 receptor subunits reveals a novel ATP-gated ion channel. Mol. Pharmacol. 54, 989–993 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Khakh, B. S. & Henderson, G. Modulation of fast synaptic transmission by presynaptic ligand-gated cation channels. J. Auton. Nerv. Syst. 81, 110–121 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  80. Le, K. T. et al. Sensory presynaptic and widespread somatodendritic immunolocalization of central ionotropic P2X ATP receptors. Neuroscience 83, 177–190 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Sun, X. P. & Stanley, E. F. An ATP-activated, ligand-gated ion channel on a cholinergic presynaptic nerve terminal. Proc. Natl Acad. Sci. USA 93, 1859–1863 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fu, W. M. & Poo, M.-M. ATP potentiates spontaneous transmitter release at developing neuromuscular synapses. Neuron 6, 837–843 (1991).

    Article  CAS  PubMed  Google Scholar 

  83. Gu, J. G. & MacDermott, A. B. Activation of ATP P2X receptors elicits glutamate release from sensory neuron synapses. Nature 389, 749–753 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  84. Hugel, S. & Schlichter, R. Presynaptic P2X receptors facilitate inhibitory GABAergic transmission between cultured rat spinal cord dorsal horn neurons. J. Neurosci. 20, 2121– 2130 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Khakh, B. S. & Henderson, G. ATP receptor-mediated enhancement of fast excitatory neurotransmitter release in the brain. Mol. Pharmacol. 54, 372–378 ( 1998).References 83 85 show that presynaptic P2X receptors regulate fast synaptic transmission.

    Article  CAS  PubMed  Google Scholar 

  86. Boehm, S. ATP stimulates sympathetic transmitter release via presynaptic P2X purinoceptors . J. Neurosci. 19, 737– 746 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fu, W. M. & Liu, J. J. Regulation of acetylcholine release be presynaptic nicotinic receptors at developing neuromuscular synapses. Mol. Pharmacol. 51, 390–398 (1997).

    CAS  PubMed  Google Scholar 

  88. Burnstock, G. Purinergic nerves. Pharmacol. Rev. 24, 509 –581 (1972).

    CAS  PubMed  Google Scholar 

  89. Evans, R. J., Derkach, V. & Surprenant, A. ATP mediates fast synaptic transmission in mammalian neurons. Nature 357, 503– 505 (1992).

    Article  CAS  PubMed  Google Scholar 

  90. Silinsky, E. M., Gerzanich, V. & Vanner, S. M. ATP mediates excitatory synaptic transmission in mammalian neurons. Br. J. Pharmacol. 106, 762–763 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Silinsky, E. M. & Gerzanich, V. On the excitatory effects of ATP and its role as a neurotransmitter in coeliac neurons of the guinea-pig. J. Physiol. (Lond.) 464, 197 –212 (1993).

    Article  CAS  Google Scholar 

  92. Galligan, J. J. & Bertrand, P. P. ATP mediates fast synaptic potentials in enteric neurons. J. Neurosci. 14, 7563–7571 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Edwards, F. A., Gibb, A. J. & Colquhoun, D. ATP receptor-mediated synaptic currents in the central nervous system. Nature 359, 144– 147 (1992).

    Article  CAS  PubMed  Google Scholar 

  94. Robertson, S. J., Burnashev, N. & Edwards, F. A. Ca2+ permeability and kinetics of glutamate receptors in rat medial habenula neurons: implications for purinergic transmission in this nucleus. J. Physiol. (Lond.) 518 , 539–549 (1999).

    Article  CAS  Google Scholar 

  95. Nieber, K., Poelchen, W. & Illes, P. Role of ATP in fast excitatory synaptic potentials in locus coeruleus neurons of the rat. Br. J. Pharmacol. 122, 423–430 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bardoni, R., Goldstein, P. A., Lee, C. J., Gu, J. G. & MacDermott, A. B. ATP P2X receptors mediate fast synaptic transmission in the dorsal horn of the rat spinal cord. J. Neurosci. 17, 5297–5304 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jo, Y.-H. & Schlichter, R. Synaptic corelease of ATP and GABA in cultured spinal neurons. Nature Neurosci. 2 , 241–245 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Pankratov, Y., Castro, E., Miras-Portugal, M. T. & Krishtal, O. A purinergic component of the excitatory postsynaptic current mediated by P2X receptors in the CA1 neurons of the rat hippocampus. Eur. J. Neurosci. 10, 3898–3902 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Gribble, F. M. et al. A novel method for measurement of sub-membrane ATP concentration . J. Biol. Chem. 275, 30046– 30049 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Bleehen, T. & Keele, C. A. Observations on the algogenic actions of adenosine compounds on the human blister base preparation. Pain 3, 367–377 ( 1977).

    Article  CAS  PubMed  Google Scholar 

  101. Coutts, A. A., Jorizzo, J. L., Eady, R. A., Greaves, M. W. & Burnstock, G. Adenosine triphosphate-evoked vascular changes in human skin: mechanism of action. Eur. J. Pharmacol. 76, 391–401 ( 1981).

    Article  CAS  PubMed  Google Scholar 

  102. Hamilton, S. G., Warburton, J., Bhattacharjee, A., Ward, J. & McMahon, S. B. ATP in human skin elicits a dose-related pain response which is potentiated under conditions of hyperalgesia. Brain 123, 1238–1246 ( 2000).

    Article  PubMed  Google Scholar 

  103. Bland-Ward, P. A. & Humphrey, P. P. Acute nociception mediated by hindpaw P2X receptor activation in the rat. Br. J. Pharmacol. 122, 365–371 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dowd, E., McQueen, D. S., Chessell, I. P. & Humphrey, P. P. P2X receptor-mediated excitation of nociceptive afferents in the normal and arthritic rat knee joInt Br. J. Pharmacol. 125, 341–346 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kirkup, A. J., Booth, C. E., Chessell, I. P., Humphrey, P. P. & Grundy, D. Excitatory effect of P2X receptor activation on mesenteric afferent nerves in the anaesthetised rat. J. Physiol. (Lond.) 520, 551–563 (1999).

    Article  CAS  Google Scholar 

  106. Sawynok, J. & Reid, A. Peripheral adenosine 5′-triphosphate enhances nociception in the formalin test via activation of a purinergic P2X receptor. Eur. J. Pharmacol. 330, 115– 121 (1997).

    Article  CAS  PubMed  Google Scholar 

  107. McQueen, D. S. et al. Activation of P2X receptors for adenosine triphosphate evokes cardiorespiratory reflexes in anaesthetized rats. J. Physiol. (Lond.) 507, 843–855 ( 1998).

    Article  CAS  Google Scholar 

  108. Cook, S. P. & McCleskey, E. W. Rapid activation of nociceptor P2X receptors by damage to nearby cells. Soc. Neurosci. Abstr. 39, 17 (2000).

    Google Scholar 

  109. Hamilton, S. G., Wade, A. & McMahon, S. B. The effects of inflammation and inflammatory mediators on nociceptive behaviour induced by ATP analogues in the rat. Br. J. Pharmacol. 126, 326–332 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Krishtal, O. A., Marchenko, S. M. & Obukhov, A. G. Cationic channels activated by extracellular ATP in rat sensory neurons. Neuroscience 27, 995–1000 (1988).

    Article  CAS  PubMed  Google Scholar 

  111. Krishtal, O. A., Marchenko, S. M., Obukhov, A. G. & Volkova, T. M. Receptors for ATP in rat sensory neurons: the structure-function relationship for ligands. Br. J. Pharmacol. 95, 1057– 1062 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Khakh, B. S., Humphrey, P. P. & Surprenant, A. Electrophysiological properties of P2X-purinoceptors in rat superior cervical, nodose and guinea-pig coeliac neurons. J. Physiol. (Lond.) 484, 385–395 (1995).

    Article  CAS  Google Scholar 

  113. Robertson, S. J., Rae, M. G., Rowan, E. G. & Kennedy, C. Characterisation of a P2X-purinoceptor in cultured neurons of the rat dorsal root ganglia. Br. J. Pharmacol. 118, 951–956 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rae, M. G., Rowan, E. G. & Kennedy, C. Pharmacological properties of P2X3-receptors present in neurons of the rat dorsal root ganglia. Br. J. Pharmacol. 124, 176–180 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Thomas, S., Virginio, C., North, R. A. & Surprenant, A. The antagonist trinitrophenyl-ATP reveals coexistence of distinct P2X receptor channels in rat nodose neurons. J. Physiol. (Lond.) 509, 411–417 (1998).

    Article  CAS  Google Scholar 

  116. Cockayne, D. A. et al. Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 407, 1011–1015 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Souslova, V. et al. Warm-coding deficits and aberrant inflammatory pain in mice lacking P2X3 receptors. Nature 407, 1015–1017 (2000). References 116 and 117 report on pain-related aspects of P2X 3 -knockout mice.

    Article  CAS  PubMed  Google Scholar 

  118. Rhee, J. S., Wang, Z. M., Nabekura, J., Inoue, K. & Akaike, N. ATP facilitates spontaneous glycinergic IPSC frequency at dissociated rat dorsal horn interneuron synapses. J. Physiol. (Lond.) 524, 471–483 (2000).

    Article  CAS  Google Scholar 

  119. Tsuda, M., Ueno, S. & Inoue, K. Evidence for the involvement of spinal endogenous ATP and P2X receptors in nociceptive responses caused by formalin and capsaicin in mice. Br. J. Pharmacol. 128, 1497–1504 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Stanfa, L. C., Kontinen, V. K. & Dickenson, A. H. Effects of spinally administered P2X receptor agonists and antagonists on the responses of dorsal horn neurons recorded in normal, carrageenan-inflamed and neuropathic rats. Br. J. Pharmacol. 129, 351–359 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Green, T., Heinemann, S. F. & Gusella, J. F. Molecular Neurobiology and genetics: investigation of neural function and dysfunction. Neuron 20, 427–444 (1998).

    Article  CAS  PubMed  Google Scholar 

  122. Ranganathan, R., Cannon, S. C. & Horvitz, H. R. MOD-1 is a serotonin-gated chloride channel that modulates locomotory behaviour in C. elegans. Nature 408, 470–475 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Cully, D. F. et al. Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature 371, 707–711 (1994).

    Article  CAS  PubMed  Google Scholar 

  124. Chen, G. Q., Cui, C., Mayer, M. L. & Gouaux, E. Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature 402, 817–821 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  125. Brake, A. J., Wagenbach, M. J. & Julius, D. New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371, 519–523 (1994).

    Article  CAS  PubMed  Google Scholar 

  126. Davies, P. A. et al. The 5-HT3B subunit is a major determinant of serotonin-receptor function. Nature 397, 359– 363 (1999).

    Article  CAS  PubMed  Google Scholar 

  127. Dingledine, R., Borges, K., Bowie, D. & Traynelis, S. F. The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61 (1999).

    CAS  PubMed  Google Scholar 

  128. Lukas, R. J. et al. International Union of Pharmacology. XX. Current status of the nomenclature for nicotinic acetylcholine receptors and their subunits . Pharmacol. Rev. 51, 397– 401 (1999).

    CAS  PubMed  Google Scholar 

  129. North, R. A. Families of ion channels with two hydrophobic segments. Curr. Opin. Cell Biol. 8, 474–483 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  130. Valera, S. et al. A new class of ligand-gated ion channel defined by P2X receptor for extracellular ATP. Nature 371, 516– 519 (1994).

    Article  CAS  PubMed  Google Scholar 

  131. Waldmann, R., Champigny, G., Bassilana, F., Heurteaux, C. & Lazdunski, M. A proton-gated cation channel involved in acid-sensing. Nature 386, 173 –177 (1997).

    Article  CAS  PubMed  Google Scholar 

  132. Lingueglia, E., Champigny, G., Lazdunski, M. & Barbry, P. Cloning of the amiloride-sensitive FMRFamide peptide-gated sodium channel . Nature 378, 730–733 (1995).

    Article  CAS  PubMed  Google Scholar 

  133. Burnstock, G. The past, present and future of purine nucleotides as signalling molecules . Neuropharmacology 36, 1127– 1139 (1997).

    Article  CAS  PubMed  Google Scholar 

  134. Nakazawa, K. ATP-activated current and its interaction with acetylcholine-activated current in rat sympathetic neurons. J. Neurosci. 14, 740–750 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Searl, T. J., Redman, R. S. & Silinsky, E. M. Mutual occlusion of P2X ATP receptors and nicotinic receptors on sympathetic neurons of the guinea-pig. J. Physiol. (Lond.) 510, 783–791 ( 1998).

    Article  CAS  Google Scholar 

  136. Zhou, X. & Galligan, J. J. Non-additive interaction between nicotinic cholinergic and P2X purine receptors in guinea-pig enteric neurons in culture. J. Physiol. (Lond.) 513, 685 –697 (1998).

    Article  CAS  Google Scholar 

  137. Barajas-Lopez, C., Espinosa-Luna, R. & Zhu, Y. Functional interactions between nicotinic and P2X channels in short-term cultures of guinea-pig submucosal neurons. J. Physiol. (Lond.) 513, 671–683 ( 1998).

    Article  CAS  Google Scholar 

  138. Khakh, B. S., Zhou, X., Sydes, J., Galligan, J. J. & Lester, H. A. State-dependent cross-inhibition between transmitter-gated cation channels. Nature 406, 405– 410 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. Lutz, P. L. & Kabler, S. Release of adenosine and ATP in the brain of the freshwater turtle (Trachemys scripta) during long-term anoxia. Brain Res. 769, 281– 286 (1997).

    Article  CAS  PubMed  Google Scholar 

  140. Bueno, L. & Fioramonti, J. Effects of inflammatory mediators on gut sensitivity. Can. J. Gastroenterol. 13, 42A–46A (1999).

    Article  PubMed  Google Scholar 

  141. Taleb, O. & Betz, H. Expression of the human glycine receptor α1 subunit in Xenopus oocytes: apparent affinities of agonists increase at high receptor density. EMBO J. 13, 1318 –1324 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Honore, E. et al. Different types of K+ channel current are generated by different levels of a single mRNA. EMBO J. 11, 2465–2471 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Duke, T. A. & Bray, D. Heightened sensitivity of a lattice of membrane receptors. Proc. Natl Acad. Sci. USA 96 , 10104–10108 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Liu, F. et al. Direct protein–protein coupling enables cross-talk between dopamine D5 and γ-aminobutyric acid A receptors. Nature 403, 274–280 (2000).

    Article  CAS  PubMed  Google Scholar 

  145. Dalva, M. B. et al. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103, 957– 969 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

While at Caltech, B.S.K. was supported by a Wellcome Trust (UK) International Prize Travelling Research Fellowship and Roche Bioscience (Palo Alto). Many thanks to Cesar Labarca for comments on the paper and to Henry A. Lester for encouragement.

Author information

Authors and Affiliations

Authors

Supplementary information

Related links

Related links

DATABASE LINKS

P2X6

P2X7

P2X2

P2X1

P2X4

P2X3

P2X5

FURTHER INFORMATION

The ligand-gated ion channels database

The ion channel network

Baljit Khakh lab

Glossary

AUERBACHS PLEXUS

A collection of nerves and ganglia located between the circular and longitudinal muscles in the small intestine. It is also known as the myenteric plexus.

CHROMAFFIN CELLS

Cells of the adrenal gland that store and secrete catecholamines. They are termed 'chromaffin' because of the ability of chromium salts to stain them.

ECTOATPASES

A general term for the extracellular enzymes that hydrolyse ATP.

LEADER SEQUENCE

A stretch of hydrophobic residues at the amino-terminal end of some proteins, which directs them to the plasma membrane or to the membrane of specific cellular organelles.

P REGION

A conserved structural motif found in all K+-selective ion channels, which constitutes part of the channel pore.

POTENCY

A measure of the change in response as a function of ligand concentration. Agonist potency is quantified as the concentration of ligand that produces half the maximal effect (EC50). The classic pharmacological definition of potency thus includes components of affinity and efficacy. In such schemes, efficacy is simply the ability of a drug to evoke a response once bound. Potency is related to affinity, but potency and affinity are different measures of drug action.

ALANINE SCANNING MUTAGENESIS

This method is used to obtain a preliminary profile of the functionally important regions of a protein. It is based on the systematic replacement of amino acids into alanine and the subsequent analysis of the effect of the mutation on the function of the protein.

SCHIFF BASE

A reversible bond formed by the condensation of carbonyl and amino groups.

SUBSTITUTED CYSTEINE ACCESSIBILITY MUTAGENESIS

A method used to identify the residues that are likely to line the pore of a channel. It is based on the systematic replacement of native amino acids by cysteines to then test the ability of hydrophilic molecules to react with the added cysteines. If a cysteine is accessible to the hydrophilic reagent, then channel permeability will be affected.

SYNAPTOSOME

The presynaptic terminal isolated after subcellular fractionation. This structure retains the anatomical integrity of the terminal and can take up, store and release neurotransmitters.

MINIATURE EPSCs

Excitatory synaptic currents observed in the absence of presynaptic action potentials, thought to correspond to the response elicited by a single vesicle of transmitter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khakh, B. Molecular physiology of p2x receptors and atp signalling at synapses . Nat Rev Neurosci 2, 165–174 (2001). https://doi.org/10.1038/35058521

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35058521

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing