Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interneurons unbound

Abstract

Local-circuit, γ-aminobutyric acid-releasing inhibitory interneurons of the hippocampus and cortex have traditionally been considered as the regulators of principal neuron activity — the yin to the excitatory yang. Recent evidence indicates that, in addition to that role, their network connectivity and the properties of their intrinsic voltage-gated currents are finely tuned to permit inhibitory interneurons to generate and control the rhythmic output of large populations of both principal cells and other populations of inhibitory interneurons. This review brings together recently described properties and emerging principles of interneuron function that indicate a much more complex role for these cells than just providers of inhibition.

Key Points

  • Interneurons have been largely considered as simple providers of inhibition. However, recent evidence indicates that their role is more complex. One particular example of this is the fact that interneurons can generate and control the rhythmic output of large populations of both principal cells and other populations of inhibitory interneurons.

  • Interneurons have been classified under different criteria, such as their anatomy, their neurochemical content, their firing patterns and other cellular properties. However, all of these classifications have obtained limited success. One alternative classification that has become increasingly common and that may pave the way towards a general understanding of interneuron subtypes and the rules of their connectivity is based on the nature of the excitatory input received by interneurons, in combination with their inhibitory output.

  • Interneurons possess different types of glutamate receptor, which endow principal neuron–interneuron communication with specific properties. The rapid kinetic properties of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-receptor-mediated excitatory synaptic potentials (EPSPs) can detect coincident firing of multiple presynaptic inputs. The smaller and slower kainate receptor EPSPs are most effective during temporal summation at lower frequencies of activation.

  • Another factor that influences interneuron function is the pattern of expression of voltage-gated ion channels. Interneurons possess Ca2+ and Na+ channels that endow them with properties different from principal cells. However, the differential expression of K+ channels constitutes the clearest example of the importance of voltage-dependent conductances for interneuron function. In particular, K+ conductances control fast interneuron spiking and the temporal precision with which EPSPs trigger action potentials in interneurons.

  • Communication among interneurons is both chemical (through γ-aminobutyrate (GABA)-releasing synapses) and electrical (through gap junctions). These two forms of communication show distinct polarities, timing and short-term dynamics and, therefore, are likely to have different functions. Nevertheless, neuronal synchronization within interneuronal networks is likely to result from a synergistic effect of both electrical and chemical coupling.

  • By virtue of their extensive interconnections, interneurons form distinct networks that have important roles in shaping the activity of the central nervous system. One common property of interneuron networks is the generation of oscillatory rhythmic activity. Computational and empirical approaches have shown that intrinsic conductances, properties of inhibitory synaptic transmission, and interneuronal connectivity through gap junctions dictate the nature of the oscillatory activity.

  • To understand the role of interneurons in a particular function of the nervous system, one must understand the nature of the afferent input, the specific roles of voltage-gated conductances, the types of interneuronal signalling, and the anatomical identity of the cell types of interest. This information will allow us to build more precise models and to ask clearer questions about the roles of specific inhibitory interneurons in generating or modulating particular brain functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain-specific innervation of hippocampal interneurons.
Figure 2: Ca2+-permeable AMPA receptors mediate fast synaptic transmission in interneurons.
Figure 3: Fast-spiking and precision timing are controlled by intrinsic K+ conductances.
Figure 4: GABA-mediated chemical transmission and gap junction-mediated electrical transmission.
Figure 5: Interneurons and networks.

Similar content being viewed by others

References

  1. Buhl, E. H., Halasy, K. & Somogyi, P. Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. Nature 368, 823–828 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Miles, R., Toth, K., Gulyas, A. I., Hajos, N. & Freund, T. F. Differences between somatic and dendritic inhibition in the hippocampus. Neuron 16, 815– 823 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Halasy, K. et al. Synaptic target selectivity and input of GABAergic basket and bistratified interneurons in the CA1 area of the rat hippocampus. Hippocampus 6, 306–329 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  4. Maccaferri, G. et al. Cell surface domain specific postsynaptic currents evoked by identified GABAergic neurons in rat hippocampus in vitro. J. Physiol (Lond.) 524, 91–116 (2000).

    Article  CAS  Google Scholar 

  5. Hoffman, D. A., Magee, J. C., Colbert, C. M., & Johnston, D. K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387, 869–875 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Callaway, J. C., & Ross, W. N. Frequency-dependent propagation of sodium action potentials in dendrites of hippocampal CA1 pyramidal neurons J. Neurophysiol. 74, 1395– 1403 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. McBain, C. J. Multiple forms of feedback inhibition by str. Oriens inhibitory interneurons? J. Physiol. (Lond.) 524, 2 ( 2000).

    Article  Google Scholar 

  8. Freund,T. F. & Buzsaki, G. Interneurons in the hippocampus . Hippocampus 6, 345–470 (1996).Recognized as the first comprehensive review of the interneuron field with the most extensive description of cortical and inhibitory interneuron anatomy, neurochemistry and circuitry. An outstanding resource for experts and beginners alike.

    CAS  Google Scholar 

  9. Oliva, A. A. et al. Novel hippocampal interneuron subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. J. Neurosci. 20, 3354–3368 (2000).By linking expression of green-fluorescent protein to somatostatin expression, several previously undescribed somatostatin-positive inhibitory interneuron types were described. Moreover, by combining physiological approaches with an analysis of the cell microcircuitry, the authors provide an example of how molecular tools will revolutionize research on inhibitory interneuron physiology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kawaguchi, Y. & Hama, K. Physiological heterogeneity of non-pyramidal cells in the rat hippocampal CA1 region. Exp. Brain Res. 72, 494–502 (1988).

    Article  CAS  PubMed  Google Scholar 

  11. Lacaille, J.-C., Meuller, A. L., Kunkel, D. D & Schwartzkroin, P. A. Local circuit interactions between oriens/alveus interneurons and CA1 pyramidal cells in hippocampal slices: electrophysiology and morphology. J. Neurosci. 7, 1979–1993 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Traub, R. D., Miles, R. & Wong, R. K. S. Models of synchronized hippocampal bursts in the presence of inhibition. I. Single population events. J. Neurophysiol. 58, 739–751 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Parra, P., Gulyas, A. I. & Miles, R. How many subtypes of inhibitory cells in the hippocampus? Neuron 20, 983–993 (1998).Shows that interneurons are excited or inhibited by a bewildering number of combinations of different modulators. When mapped onto the anatomical properties of interneurons, these connections indicate that a staggering number of sub-populations may exist that could preclude any meaningful understanding of interneuron subtypes.

    Article  CAS  PubMed  Google Scholar 

  14. Gulyas, A., Megias, M., Emri, Z. & Freund, T. F. Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the CA1 area of the rat hippocampus. J. Neurosci. 19, 10082–10097 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Thomson, A. M. Activity-dependent properties of synaptic transmission at two classes of connections made by rat neocortical pyramidal axons in vitro. J. Physiol. (Lond.) 502, 131–147 ( 1997).

    Article  CAS  Google Scholar 

  16. Ali, A. B. & Thomson, A. M. Facilitating pyramid to horizontal oriens-alveus interneurone inputs: dual intracellular recordings in slices of rat hippocampus. J. Physiol. (Lond.) 507, 185–199 (1998).

    Article  CAS  Google Scholar 

  17. Ali, A. B., Deuchars, J., Pawelzik, H. & Thomson, A. M. CA1 pyramidal to basket and bistratified cell EPSCs: dual intracellular recordings in rat hippocampal slices. J. Physiol. (Lond.) 507, 201–217 (1998).

    Article  CAS  Google Scholar 

  18. Scanziani, M., Gahwiler, B. H. & Charpak, S. Target cell-specific modulation of transmitter release at terminals from a single axon. Proc. Natl Acad. Sci. USA 95, 12004–12009 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maccaferri, G., Toth, K. & McBain, C. J. Target-specific expression of presynaptic mossy fiber plasticity. Science 279, 1368– 1370 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Reyes, A. et al. Target-cell-specific facilitation and depression in neocortical circuits. Nature Neurosci. 1, 279– 285 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Markram, H., Wang, Y. & Tsodyks, M. Differential signaling via the same axon of neocortocal pyramidal neurons. Proc. Natl Acad. Sci. USA 95, 5323–5328 (1998). References 20 and 21 were the first direct demonstration that transmitter release could be differentially and simultaneously modulated at individual terminals from the same axon.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Reyes, A. & Sakmann, B. Developmental switch in the short-term modification of unitary EPSPs evoked in layer 2/3 and layer 5 pyramidal neurons of rat neocortex. J. Neurosci. 19, 3827– 3835 (1999).In recordings from the immature rat sensorimotor cortex, evoked EPSPs showed depression in response to a short train of stimuli. The degree of depression was determined by the location of the presynaptic neuron. In the mature cortex, however, the EPSPs facilitated to a comparable degree, regardless of the layer that the pre- or postsynaptic cell was located.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gupta, A., Wang, Y. & Markram, H. Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287, 273–278 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Dingledine, R., Borges, K., Bowie, D. & Traynelis, S. F. The glutamate receptor ion channels. Pharm. Rev. 51, 7 –61 (1999).

    CAS  PubMed  Google Scholar 

  25. Geiger, J. R. P., Roth, A., Taskin, B. & Jonas, P. Glutamate-mediated synaptic excitation of cortical interneurons. Handb. Exp. Pharm. 141, 363–398 ( 1999).

    Article  CAS  Google Scholar 

  26. Koh, D. S., Burnashev, N. & Jonas, P. Block of native Ca2+-permeable AMPA receptors in rat brain by intracellular polyamines generates double rectification. J. Physiol. (Lond.) 486, 305–312 (1995).

    Article  CAS  Google Scholar 

  27. McBain, C. J. & Dingledine, R. Heterogenity of synaptic glutamate receptors on CA3 stratum-radiatum interneurons of rat hippocampus. J. Physiol. (Lond.) 462, 373–392 (1993).

    Article  CAS  Google Scholar 

  28. Jonas, P., Racca C., Sakmann B., Seeburg, P. H. & Monyer, H. Differences in Ca2+ permeability of AMPA-type glutamate receptor channels In neocortical neurons caused by differential GluR-B subunit expression. Neuron 12, 1281 –1289 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Geiger, J. R. H. et al. Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15, 193– 204 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Isa, T., Iino, M. & Ozawa, S. Spermine blocks synaptic transmission mediated by Ca2+-permeable AMPA receptors. Neuroreport 7, 689– 692 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Washburn, M. S., Numberger, M., Zhang, S. & Dingledine, R. Differential dependence on GluR2 expression of three characteristic features of AMPA receptors . J. Neurosci. 17, 9393– 9406 (1997).The relative abundance of the GluR2 in interneurons can result in receptors that show inward rectification but that are both insensitive to externally applied polyamines and have low Ca2+-permeability (see also reference 36 ). This emphasizes that the common use of the 'rectification index' of EPSCs to identify Ca2+-permeable AMPA receptors is not a useful or reliable parameter.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jonas, P. & Burnashev, N. Molecular mechanisms controlling calcium entry through AMPA-type glutamate receptor channels. Neuron 15, 987–990 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  33. Geiger, J. R., Lubke, J., Roth, A., Frotscher, M. & Jonas, P. Submillisecond AMPA receptor-mediated signaling at a principal neuron–interneuron synapse. Neuron 18, 1009–1023 (1997). The authors dissected presynaptic and postsynaptic contributions to the excitatory postsynaptic current. Submillisecond signalling is achieved by the precise timing of glutamate release and the rapid deactivation of postsynaptic Ca2+-permeable AMPA receptors. Computational modelling indicates that the precise timing of the EPSC may enable interneurons to detect synchronous principal neuron activity.

    Article  CAS  PubMed  Google Scholar 

  34. Fricker, D. & Miles, R. EPSP-amplification and the precision of spike timing in hippocampal neurons. Neuron 28, 559–569 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Toth, K. & McBain, C. J. Afferent specific innervation of two distinct AMPA receptor subtypes on single hippocampal interneurons . Nature Neurosci. 1, 572– 578 (1998).First functional demonstration that single hippocampal inhibitory interneurons can express several types of AMPA receptor targeted to distinct synaptic domains across the dendritic tree.

    Article  CAS  PubMed  Google Scholar 

  36. Toth, K. et al. Differential mechanisms of transmission at three types of mossy fiber synapse. J. Neurosci. 20, 8279– 8289 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kamboj, S. K., Swanson, G. T. & Cull-Candy, S. G. Intracellular spermine confers rectification on rat calcium-permeable AMPA and kainate receptors. J. Physiol. (Lond.) 486, 297–303 ( 1995).

    Article  CAS  Google Scholar 

  38. Donevan, S. D. & Rogawski, M. A. Intracellular polyamines mediate inward rectification of Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Proc. Natl Acad. Sci. USA 92, 9298–9302 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bowie, D. & Mayer, M. L. Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block. Neuron 15, 453– 462 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Rozov, A., Zilberter, Y., Wollmuth, L. P. & Burnashev, N. Facilitation of currents through rat Ca2+-permeable AMPA receptor channels by activity-dependent relief from polyamine block. J. Physiol. (Lond.) 511, 361–377 (1998).

    Article  CAS  Google Scholar 

  41. Rozov, A. & Burnashev, N. Polyamine-dependent facilitation of postsynaptic AMPA receptors counteracts paired-pulse depression. Nature 401, 594–598 ( 1999).A novel, postsynaptic mechanism of short-term facilitation at synapses between pyramidal neurons and interneurons in rat neocortex. This form of plasticity results from the use-dependent blockade of Ca+-permeable AMPA receptors by polyamines.

    Article  CAS  PubMed  Google Scholar 

  42. Laezza, F., Doherty, J. J. & Dingledine, R. Long-term depression in hippocampal interneurons: joint requirement for pre- and postsynaptic events. Science 285, 1411–1414 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. McMahon, L. & Kauer, J. A. Hippocampal interneurons express a novel form of synaptic plasticity. Neuron 18, 295–305 (1997).Patterns of stimuli that produce long-lasting potentiation at Schaffer collateral synapses onto pyramidal cells produce a lasting heterosynaptic depression on interneurons of stratum radiatum. This study paved the way for subsequent research highlighting that interneuron long-term potentiation may be peculiar to Ca+-permeable AMPA receptor-containing synapses on various hippocampal interneurons36,42.

    Article  CAS  PubMed  Google Scholar 

  44. Bureau, I., Bischoff, S., Heinemann, S. F. & Mulle, C. Kainate receptor mediated responses in the CA1 field of wild type and GluR6-deficient mice. J. Neurosci. 19, 653– 663 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cossart, R. et al. GluR5 kainate receptor activation in interneurons increases tonic inhibition of pyramidal cells. Nature Neurosci. 1, 470–478 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Frerking, M., Malenka, R. C. & Nicoll, R. A. Synaptic activation of kainate receptors on hippocampal interneurons Nature Neurosci. 1, 479– 486 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Frerking, M. & Nicoll, R. A. Synaptic kainate receptors. Curr. Opin. Neurobiol. 10, 342–351 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Rodriguez-Moreno, A., Lopez-Garcia, J. C. & Lerma, J. Two populations of kainate receptors with separate signaling mechanisms in hippocampal interneurons. Proc. Natl Acad. Sci. USA 97, 1293–1298 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fraser, D. D. & MacVicar, B. A. Low-threshold transient calcium current in rat hippocampal lacunosum-moleculare interneurons: kinetics and modulation by neurotransmitters. J. Neurosci. 11, 2812–2820 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Martina, M. & Jonas, P. Functional differences in Na+ channel gating between fast-spiking interneurones and principal neurones of rat hippocampus. J. Physiol. (Lond.) 15 , 593–603 (1997). PubMed

    Article  Google Scholar 

  51. Zhang, L. & McBain, C. J. Voltage-gated potassium currents in stratum oriens-alveus inhibitory neurones of the rat CA1 hippocampus. J. Physiol. (Lond.) 488, 647–660 (1995).

    Article  CAS  Google Scholar 

  52. Du, J., Zhang, L., Weiser, M., Rudy, B. & McBain, C. J. Developmental expression and functional characterization of the potassium-channel subunit Kv3.1 in parvalbumin-containing interneuron of the rat hippocampus. J. Neurosci. 16, 506–518 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Keros, S. & McBain, C. J. Arachidonic acid inhibits transient potassium currents and broadens action potentials during electrographic seizures in hippocampal pyramidal and inhibitory interneurons. J. Neurosci. 17, 3476–3487 ( 1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Martina, M., Schultz, J. H., Ehmke, H., Monyer, H. & Jonas, P. Functional and molecular differences between voltage-gated K+ channels of fast spiking interneurons and pyramidal neurons of rat hippocampus. J. Neurosci. 18, 8111–8125 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Erisir A., Lau, D., Rudy, B. & Leonard, C. S. The function of specific K+ channels in sustained high frequency firing of fast spiking neocortical interneurons J. Neurophysiol. 82, 2476–2489 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Aoki, T. & Baraban, S. C. Properties of a calcium-activated K+ current on interneurons in the developing rat hippocampus . J. Neurophysiol. 83, 3453– 3461 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Rudy, B. et al. Contributions of Kv3 channels to neuronal excitability. Ann. NY Acad. Sci. 868, 304–343 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Moreno, H. et al. Thalamocortical projections have a K+-channel that is phosphorylated and modulated by cAMP-dependent protein kinase. J. Neurosci. 15, 5486–5501 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Atzori, M. et al. H2 histamine receptor-phosphorlyation of Kv3.2 modulates interneuron fast spiking. Nature Neurosci. 3, 791– 798 (2000).Fast spiking in different kinds of interneuron is modulated by histamine H2 receptor agonists through PKA phosphorylation of the voltage-gated K+-channel subunit Kv3.2. This indicates that other neuromodulators that also act to increase adenylyl cyclase activity may modulate currents through Kv3.2-containing channels.

    Article  CAS  PubMed  Google Scholar 

  60. Martina, M., Vida, I. & Jonas, P. Distal initiation and active propagation of action potentials in interneuron dendrites. Science 287, 295– 300 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Johnston, D. et al. Dendritic potassium channels in hippocampal pyramidal neurons . J. Physiol.(Lond.) 525, 75– 81 (2000).

    Article  CAS  Google Scholar 

  62. Vicini, S. New perspectives in the functional role of GABAA channel heterogeneity . Mol. Neurobiol. 19, 97– 110 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Gulyás, A. I., Hájos, N. & Freund, T. F. Interneurons containing calretinin are specialized to control other interneurons in the rat hippocampus. J. Neurosci. 16, 3397–3411 ( 1996).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kosaka, T. & Hama, K. Gap junctions between non-pyramidal cell dendrites in the rat hippocampus (CA1 and CA3 regions): a combined Golgi-electron microscopy study. J. Comp. Neurol. 8, 150 –161 (1985). PubMed

    Article  Google Scholar 

  65. Fukuda, T. & Kosaka, T. Gap junctions linking the dendritic network of GABAergic interneurons in the hippocampus. J. Neurosci. 20, 1519–1528 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Taylor, C. P. & Dudek, F. E. Synchronous neural afterdischarges in rat hippocampal slices without active chemical synapses. Science 218, 810–812 ( 1982).

    Article  CAS  PubMed  Google Scholar 

  67. Shiosaka, S., Yamamoto, T., Hertzberg, E. L. & Nagy, J. I. Gap junction protein in rat hippocampus: correlative light and electron microscope immunohistochemical localization. J. Comp. Neurol. 281, 282–297 (1989).

    Article  CAS  PubMed  Google Scholar 

  68. Michelson, H. B. & Wong, R. K. Synchronization of inhibitory neurones in the guinea-pig hippocampus in vitro. J. Physiol. (Lond.) 477, 35–45 (1994).

    Article  CAS  Google Scholar 

  69. Connors, B. W., Benardo, L. S. & Prince, D. A. Coupling between neurons of the developing rat neocortex . J. Neurosci. 3, 773–782 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Peinado, A., Yuste, R. & Katz, L. C. Gap junctional communication and the development of local circuits in neocortex. Cereb. Cortex 3, 488–498 (1993).

    Article  CAS  PubMed  Google Scholar 

  71. Galarreta, M. & Hestrin, S. A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402, 72–75 (1999). Shows a high incidence of electrical coupling among fast-spiking cells. Electrical synapses are not found among pyramidal neurons, or between fast-spiking and other cortical cells. Some fast-spiking cells are interconnected by both electrical and GABA synapses. These results indicate that electrical synapses establish a network of fast-spiking cells in the neocortex, which may have a key role in coordinating cortical activity.

    Article  CAS  PubMed  Google Scholar 

  72. Gibson, J. F., Beierlein, M. & Connors, B. W. Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402, 75– 79 (1999).Describes two functionally distinct inhibitory networks comprising either fast-spiking (FS) or low-threshold-spiking (LTS) neurons. Inhibitory neurons of the same type are interconnected by electrical synapses, whereas electrical synapses between different inhibitory cell types are rare. Inhibitory chemical synapses are also common between FS cells, and between FS and LTS cells, but LTS cells rarely inhibit one another.

    Article  CAS  PubMed  Google Scholar 

  73. Tamás, G., Buhl, E. H., Lorincz, A. & Somogyi, P. Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nature Neurosci. 3, 366–371 (2000).The combined electrical and GABA synaptic coupling of basket cells instantaneously entrains gamma frequency postsynaptic firing in rat somatosensory cortex. This paper shows that precise spatio-temporal mechanisms underlie action potential timing in oscillating interneuronal networks.

    Article  PubMed  Google Scholar 

  74. Traub, R. D. Model of synchronized population bursts in electrically coupled interneurons containing active dendritic conductances. J. Comp. Neurosci. 2, 283–289 (1995).

    Article  CAS  Google Scholar 

  75. Skinner, F. K., Zhang, L., Perez-Velazquez, J. L. & Carlen, P. L. Bursting in inhibitory interneuronal networks: a role for gap junctions. J. Neurophysiol. 81, 1274–1283 (1999). PubMed

    Article  CAS  PubMed  Google Scholar 

  76. Tamás, G., Somogyi, P. & Buhl, E. H. Differentially interconnected networks of GABAergic interneurons in the visual cortex of the cat. J. Neurosci. 18, 4255–4270 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Whittington, M. A., Traub, R. D. & Jefferys, J. G. Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373, 612–615 (1995).

    Article  CAS  PubMed  Google Scholar 

  78. Whittington, M. A., Stanford, I. M., Jefferys, J. G. & Traub, R. D. Spatiotemporal patterns of gamma frequency oscillations tetanically induced in the rat hippocampal slice. J. Physiol. (Lond.) 502 , 591–602 (1997).

    Article  CAS  Google Scholar 

  79. Traub, R. D., Whittington, M. A., Colling, S. B., Buzsáki, G. & Jefferys, J. G. Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. J. Physiol. (Lond.) 493, 471–484 (1996).

    Article  CAS  Google Scholar 

  80. Traub, R. D., Whittington, M. A., Stanford, I. M. & Jefferys, J. G. A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature 383, 621– 624 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Wang, X. J. & Buzsáki, G. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J. Neurosci. 16, 6402–6413 ( 1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang, X. J. & Rinzel, J. Spindle rhythmicity in the reticularis thalami nucleus: synchronization among mutually inhibitory neurons. Neuroscience 53, 899–904 (1993).

    Article  CAS  PubMed  Google Scholar 

  83. Acsády, L., Arabadzisz, D. & Freund, T. F. Correlated morphological and neurochemical features identify different subsets of vasoactive intestinal polypeptide-immunoreactive interneurons in rat hippocampus. Neuroscience 73, 299–315 (1996).

    Article  PubMed  Google Scholar 

  84. Acsády, L., Görcs, T. J. & Freund, T. F. Different populations of vasoactive intestinal polypeptide-immunoreactive interneurons are specialized to control pyramidal cells or interneurons in the hippocampus. Neuroscience 73, 317– 334 (1996).This study, together with reference 63 , revealed a new element of cortical circuits — interneurons specialized to innervate other interneurons. This unique pattern of connectivity is thought to allow specific sub-populations of interneurons to participate in the generation of rhythmic hippocampal activity by controlling other interneuron populations terminating on principal cells.

    Article  PubMed  Google Scholar 

  85. Whittington, M. A., Jefferys, J. G. & Traub, R. D. Effects of intravenous anaesthetic agents on fast inhibitory oscillations in the rat hippocampus in vitro. Br. J. Pharmacol. 118, 1977–1986 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wallenstein, G. V. & Hasselmo, M. E. GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect. J. Neurophysiol. 78, 393–408 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  87. Chapman, C. A. & Lacaille, J. C. Intrinsic theta-frequency membrane potential oscillations in hippocampal CA1 interneurons of stratum lacunosum-moleculare. J. Neurophysiol. 81 , 1296–1307 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Buhl, E. H., Tamás, G. & Fisahn, A. Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro. J. Physiol. (Lond.) 513, 117–126 (1998).

    Article  CAS  Google Scholar 

  89. Fisahn, A., Pike, F., Buhl, E. H. & Paulsen, O. Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 394, 186–189 ( 1998).Acetylcholine-mediated activation is sufficient to induce 40-Hz network oscillations in the hippocampus in vitro . Interneurons can phase the population output of pyramidal cells and create a narrow time window for pyramidal action potentials, which supports coincidence detection in downstream populations of neurons. This paper indicates that subcortical acetylcholine-mediated input may control hippocampal memory processing by inducing fast network oscillations.

    Article  CAS  PubMed  Google Scholar 

  90. Benardo, L. S. & Prince, D. A. Cholinergic excitation of mammlain hippocampal pyramidal cells. Brain Res. 249, 315–331 ( 1982).

    Article  CAS  PubMed  Google Scholar 

  91. Madison, D. V., Lancaster, B. & Nicoll, R. A. Voltage clamp analysis of cholinergic action in the hippocampus. J. Neurosci. 7, 733– 741 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hajos, N., Papp, E. C., Acsady, L., Levey, A. I. & Freund, T. F. Distinct interneuron types express M2 muscarinic receptor immunoreactivity on their dendrites or axon terminals in the hippocampus . Neuroscience 82, 355– 376 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Jefferys, J. G., Traub, R. D. & Whittington, M. A. Neuronal networks for induced '40 Hz' rhythms. Trends Neurosci. 19, 202–208 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Cobb, S. R., Buhl, E. H., Halasy, K., Paulsen, O. & Somogyi, P. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378, 75–78 (1995).Unequivocally showed that single interneurons can phase the output of pyramidal cells. Individual GABA interneurons can effectively phase spontaneous firing and subthreshold oscillations in hippocampal pyramidal cells at theta frequencies owing to interaction of hyperpolarizing synaptic events with intrinsic oscillatory mechanisms. Because of the divergence of each inhibitory interneuron, more than a thousand pyramidal cells may share a common temporal reference established by an individual interneuron.

    Article  CAS  PubMed  Google Scholar 

  95. Draguhn, A., Traub, R. D., Schmitz, D. & Jefferys, J. G. R. Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature 394, 189– 192 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Fisahn, A. An Investigation into Cortical Gamma Frequency Oscillations In Vitro (Doctoral Thesis, Oxford University, 1999).

    Google Scholar 

  97. Traub, R. D. et al. A model of gamma-frequency network oscillations induced in the rat CA3 region by charbachol in vitro. Eur. J. Neurosci. 12, 4093–4106 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  98. Kraushaar, U. & Jonas, P. Efficacy and stability of quantal GABA release at a hippocampal interneuron–principal neuron synapse. J. Neurosci. 20, 5594–5607 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Penttonen, M., Kamondi, A., Acsady, L. & Buzsaki, G. Gamma frequency oscillation in the hippocampus of the rat: intracellular analysis in vivo . Eur. J. Neurosci. 10, 718– 728 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Traub, R., Jeffrys, J. G. R. & Whittington, M. A. Fast Oscillations in Cortical Circuits (MIT Press, Cambridge, Massachusetts, 1999).

    Book  Google Scholar 

  101. Rodriguez-Moreno, A. & Lerma, J. Kainate receptor modulation of GABA release involves a metabotropic function. Neuron 20, 1211–1218 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  102. Cunha, R. A., Malva, J. O. & Ribeiro, J. A. Kainate receptors coupled to Gi/Go proteins in the rat hippocampus. Mol. Pharmacol. 56, 429 –433 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Frerking, M., Petersen, C. C. H. & Nicoll, R. A. Mechanisms underlying kainate receptor-mediated disinhibition in the hippocampus. Proc. Natl Acad. Sci USA 96, 12917–12922 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. O'Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Clarendon, Oxford, 1978).

    Google Scholar 

  105. Chrobak, J. J. & Buzsáki, G. Selective activation of deep layer (V–VI) retrohippocampal cortical neurons during hippocampal sharp waves in the behaving rat. J. Neurosci. 14, 6160–6170 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bragin, A., Jandó, G, Nadàsdy, Z., van Landeghem, M. & Buzsáki, G. Dentate EEG spikes and associated interneuronal population bursts in the hippocampal hilar region of the rat . J. Neurophysiol. 73, 1691– 1705 (1995).

    Article  CAS  PubMed  Google Scholar 

  107. Buzsáki, G., Horvath, Z., Urioste, R., Hetke, J. & Wise, K. High-frequency network oscillation in the hippocampus. Science 256, 1025–1027 ( 1992).

    Article  PubMed  Google Scholar 

  108. Bragin, A. et al. Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat. J. Neurosci. 15, 47– 60 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ylinen, A. et al. Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanism. J. Neurosci. 15, 30–46 ( 1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Eckhorn, R. et al. Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biol. Cybern. 60, 121–130 (1988).

    Article  CAS  PubMed  Google Scholar 

  111. Gray, C. M., König, P., Engel, A. K. & Singer, W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338 , 334–337 (1989).

    Article  CAS  PubMed  Google Scholar 

  112. Singer, W. Synchronization of cortical activity and its putative role in information processing and learning. Annu. Rev. Physiol. 55, 349–374 (1993).

    Article  CAS  PubMed  Google Scholar 

  113. Trevarthen, C. B. Two mechanisms of vision in primates. Psychol. Forsch. 31, 299–348 (1968).

    Article  CAS  PubMed  Google Scholar 

  114. Schneider, G. E. Two visual systems. Science 163, 895– 902 (1969).

    Article  CAS  PubMed  Google Scholar 

  115. Maunsell, J. H. & Newsome, W. T. Visual processing in monkey extrastriate cortex. Annu. Rev. Neurosci. 10, 363–401 (1987).

    Article  CAS  PubMed  Google Scholar 

  116. DeYoe, E. A. & Van Essen, D. C. Concurrent processing streams in monkey visual cortex. Trends Neurosci. 11, 219–226 (1988).

    Article  CAS  PubMed  Google Scholar 

  117. Ungerleider, L. G. & Mishkin, M. in Analysis of Visual Behaviour (eds Ingle, D. J., Goodale, M. A. & Mansfield, R. J. W.) 549–586 (MIT Press, Cambridge, Massachusetts, 1982).

    Google Scholar 

  118. Schillen, T. B. & König, P. Binding by temporal structure in multiple feature domains of an oscillatory neuronal network. Biol. Cybern. 70, 397– 405 (1994).

    Article  CAS  PubMed  Google Scholar 

  119. Sakurai, Y. Population coding by cell assemblies — what it really is in the brain . Neurosci. Res. 26, 1– 16 (1996).

    Article  CAS  PubMed  Google Scholar 

  120. König, P., Engel, A. K. & Singer, W. Integrator or coincidence detector? The role of the cortical neuron revisited. Trends Neurosci. 19, 130–137 (1996).

    Article  PubMed  Google Scholar 

  121. Gray, C. M. & Singer, W. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl Acad. Sci. USA 86, 1698–1702 ( 1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Eeckman, F. H. & Freeman, W. J. Correlations between unit firing and EEG in the rat olfactory system. Brain Res. 528, 238–244 ( 1990).

    Article  CAS  PubMed  Google Scholar 

  123. Steriade, M., Dossi, R. C. & Nunez, A. Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression. J. Neurosci. 11, 3200–3217 ( 1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Steriade, M., Dossi, R. C., Paré, D. & Oakson, G. Fast oscillations (20–40 Hz) in thalamocortical systems and their potentiation by mesopontine cholinergic nuclei in the cat. Proc. Natl Acad. Sci. USA 88, 4396–4400 ( 1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Murthy, V. N. & Fetz, E. E. Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc. Natl Acad. Sci. USA 89, 5670– 5674 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Siapas, A. G. & Wilson, M. A. Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron 21, 1123– 1128 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. Bragin, A., Engel, J. Jr, Wilson, C. L., Fried, I. & Mathern, G. W. Hippocampal and entorhinal cortex high-frequency oscillations (100ndash;500 Hz) in human epileptic brain and in kainic acid-treated rats with chronic seizures. Epilepsia 40, 127–137 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. Zang, Y. et al. Slow oscillations (≤1 Hz) mediated by GABAergic interneuronal networks in rat hippocampus. J. Neurosci. 18, 9256–9268 (1998).

    Article  Google Scholar 

  129. Roelfsema, P. R., Engel, A. K., König, P. & Singer, W. Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385, 157– 161 (1997).

    Article  CAS  PubMed  Google Scholar 

  130. Buzsáki, G., Leung, L. W. & Vanderwolf, C. H. Cellular bases of hippocampal EEG in the behaving rat. Brain Res. 287, 139– 171 (1983).

    Article  PubMed  Google Scholar 

  131. Soltész, I. & Deschênes, M. Low- and high-frequency membrane potential oscillations during theta activity in CA1 and CA3 pyramidal neurons of the rat hippocampus under ketamine-xylazine anesthesia . J. Neurophysiol. 70, 97– 116 (1993).

    Article  PubMed  Google Scholar 

  132. Morris, R. G. M., Garrud, P., Rawlins, J. N. & O'Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683 ( 1982).

    Article  CAS  PubMed  Google Scholar 

  133. Bliss, T. V. P. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  134. Zola-Morgan, S. & Squire, L. R. Neuroanatomy of memory. Annu. Rev. Neurosci. 16, 547– 563 (1993).

    Article  CAS  PubMed  Google Scholar 

  135. Singer, W. & Gray, C. M. Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555–586 (1995).

    Article  CAS  PubMed  Google Scholar 

  136. Kamondi, A., Acsády, L., Wang, X. J. & Buzsáki, G. Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: activity-dependent phase-precession of action potentials. Hippocampus 8, 244–261 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  137. Gray, C. M. Synchronous oscillations in neuronal systems: mechanisms and functions. J. Comput. Neurosci. 1, 11–38 (1994).

    Article  CAS  PubMed  Google Scholar 

  138. Buzsáki, G. & Chrobak, J. J. Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks . Curr. Opin. Neurobiol. 5, 504– 510 (1995).

    Article  PubMed  Google Scholar 

  139. Bressler, S. L., Coppola, R. & Nakamura, R. Episodic multiregional cortical coherence at multiple frequencies during visual task performance. Nature 366, 153–156 (1993).

    Article  CAS  PubMed  Google Scholar 

  140. Munk, M. H., Roelfsema, P. R., König, P., Engel, A. K. & Singer, W. Role of reticular activation in the modulation of intracortical synchronization. Science 272, 271–274 (1996).

    Article  CAS  PubMed  Google Scholar 

  141. Steriade, M. & Amzica, F. Intracortical and corticothalamic coherency of fast spontaneous oscillations. Proc. Natl Acad. Sci. USA 93, 2533–2538 ( 1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Steriade, M., Amzica, F. & Contreras, D. Synchronization of fast (30–40 Hz) spontaneous cortical rhythms during brain activation. J. Neurosci. 16, 392–417 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Steriade, M., McCormick, D. A. & Sejnowski, T. J. Thalamocortical oscillations in the sleeping and aroused brain. Science 262, 679– 685 (1993).

    Article  CAS  PubMed  Google Scholar 

  144. Steriade, M., Nunez, A. & Amzica, F. Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram . J. Neurosci. 13, 3266– 3283 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Tiitinen, H. et al. Selective attention enhances the auditory 40-Hz transient response in humans. Nature 364, 59– 60 (1993).

    Article  CAS  PubMed  Google Scholar 

  146. Tallon-Baudry, C., Bertrand, O., Delpuech, C. & Permier, J. Oscillatory gamma-band (30–70 Hz) activity induced by a visual search task in humans. J. Neurosci. 17, 722– 734 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ribary, U. et al. Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans. Proc. Natl Acad. Sci. USA 88 , 11037–11041 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Engel, A. K., König, P., Kreiter, A. K., Schillen, T. B. & Singer, W. Temporal coding in the visual cortex: new vistas on integration in the nervous system. Trends Neurosci. 15, 218–226 (1992).

    Article  CAS  PubMed  Google Scholar 

  149. Ylinen, A. et al. Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells. Hippocampus 5, 78–90 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

ENCYCLOPEDIA OF LIFE SCIENCES

Cells of the nervous system

Dendrites

GABAA receptors

Oscillatory neural networks

Glossary

FEEDFORWARD ACTIVATION

In the feedforward regulatory system, afferent volleys directly activate the inhibitory neuron.

FEEDBACK ACTIVATION

In the feedback system, an excitatory input discharges the principal cells, whose excitatory output is fed back to the inhibitory cells through recurrent axon collaterals.

RECURRENT COLLATERALS

Axons from cells that project back to the neurons that originally activated them.

PRINCIPAL CELLS

In the hippocampus, this term refers to both the pyramidal cells of the hippocampus proper and the granule cells of the dentate gyrus.

ELECTROTONIC PROPERTIES

Term used to describe the passive properties of the cell membrane; that is, the properties not influenced by the voltage-dependent properties of the neuron.

RECTIFICATION

The property whereby current through a channel does not flow with the same ease from the inside as that from the outside. In inward rectification, for instance, current into the cell flows more easily than it flows out of the cell through the same population of channels.

CURRENT–VOLTAGE RELATIONSHIP

A plot of the changes of ionic current as a function of membrane voltage.

BASKET CELLS

Interneurons that send their axons to the cell body of the postsynaptic cell, surrounding it with a structure akin to a basket.

QUANTAL AMPLITUDE

The amplitude of the synaptic response elicited by a single vesicle of a transmitter.

DECAY TIME CONSTANT

The initial decay of an EPSP can usually be fit by a single exponential function. The time constant derived from this fit describes how quickly an EPSP decays.

GLUR2FLIP

Two splice variants of AMPA receptors known as flip and flop have been characterized. They differ in their response to glutamate, their distribution in the brain and their developmental expression.

COINCIDENCE DETECTION

The ability to sense the simultaneous occurrence of synaptic activity at different points of the same cell.

STRATUM LUCIDUM

The site of termination of the mossy fibres from the dentate gyrus onto CA3 neurons of the hippocampus.

POLYAMINES

Organic compounds that contain two or more amino groups. Putrescine, spermine and spermidine are prime examples.

ASSOCIATIONAL INPUTS

The projections from CA3 neurons to other CA3 cells on the same side of the brain. Commissural inputs are CA3–CA3 connections between the two hemispheres.

TEMPORAL SUMMATION

The way in which non-simultaneous synaptic events add in time. One of the basic elements of synaptic integration

AFTERHYPERPOLARIZATION

The membrane hyperpolarization that follows the occurrence of an action potential.

PERTUSSIS TOXIN

The causative agent of whooping cough, pertusis toxin causes the persistent activation of Gi proteins by catalyzing the ADP-ribosylation of the α subunit.

INPUT RESISTANCE

The voltage change elicited by the injection of current into a cell divided by the amount of current injected.

CUT FREQUENCY

The frequency at which a train of suprathreshold stimuli fails to elicit an action potential on every pulse. See also definition of 'low-pass filter'.

ALVEUS

Bundle of fibres formed by the efferent hippocampal axons. The alveus constitutes the first part of the fornix.

GAP JUNCTIONS

Cellular junctions that allow the free passage of current and small molecules through non-selective channels called connexons.

PHASE LAG

The time delay with which one rhythmic activity follows another of the same frequency.

LOW-PASS FILTER

A filter that suppresses all frequencies above a certain point known as the cutoff frequency.

NESTING OF OSCILLATIONS

The simultaneous occurrence of two phase-locked rhythms with different frequencies.

SPIKE-FREQUENCY ADAPTATION

The cessation of action-potential firing upon constant depolarization.

EMERGENT PROPERTY

A collective network property that is not a property of any one element forming the network (that is to say, the whole is more than the sum of its parts).

Rights and permissions

Reprints and permissions

About this article

Cite this article

McBain, C., Fisahn, A. Interneurons unbound. Nat Rev Neurosci 2, 11–23 (2001). https://doi.org/10.1038/35049047

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35049047

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing