Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A cortical–hippocampal system for declarative memory

Abstract

Recent neurobiological studies have begun to reveal the cognitive and neural coding mechanisms that underlie declarative memory — our ability to recollect everyday events and factual knowledge. These studies indicate that the critical circuitry involves bidirectional connections between the neocortex, the parahippocampal region and the hippocampus. Each of these areas makes a unique contribution to memory processing. Widespread high-order neocortical areas provide dedicated processors for perceptual, motor or cognitive information that is influenced by other components of the system. The parahippocampal region mediates convergence of this information and extends the persistence of neocortical memory representations. The hippocampus encodes the sequences of places and events that compose episodic memories, and links them together through their common elements. Here I describe how these mechanisms work together to create and re-create fully networked representations of previous experiences and knowledge about the world.

Key Points

  • Neuropsychological and experimental lesion studies indicate that the hippocampus plays a critical role between initial formation of memories and their final storage in the brain.

  • Neocortical association areas and the parahippocampal region play different roles in declarative memory as shown by electrophysiological recordings and the results of experimental lesions on various memory tests.

  • Neocortical areas play a role in the perceptual and cognitive demands of memory tests and can mediate short-term memory.

  • The parahippocampal region is involved in extending the persistence of memory for single stimuli for short periods of time in the absence of interference and for the maintenance of information concerning stimulus familiarity for longer periods in the face of interference.

  • The hippocampus encodes the sequences of places and events that constitute episodic memory and links them together in an organization that underlies the ability to make inferential associations across different experiences.

  • Interactions between the various components of the system are critical and may underlie the eventual storage of declarative memories in neocortical areas of the brain.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The anatomy of the hippocampal memory system.
Figure 2: Firing patterns associated with memory performance in ideal cortical neurons.
Figure 3: Performance of rats with hippocampal damage in the Morris water maze.
Figure 4: The social transmission of food preferences task.
Figure 5: Hippocampal neuronal firing patterns in rats during an odour DNMS task.
Figure 6: Place cell firing patterns associated with performance in a spatial memory task on a T-maze87.

References

  1. Bartlett, F. C. Remembering (Cambridge Univ. Press, Cambridge, 1932 ).

    Google Scholar 

  2. Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiat. 20, 11–21 ( 1957)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Corkin, S. Lasting consequences of bilateral medial temporal lobectomy: Clinical course and experimental findings in H.M. Sem. Neurol. 4, 249–259 (1984).

    Article  Google Scholar 

  4. Squire, L. R., Knowlton, B. & Musen, G. The structure and organization of memory. Ann. Rev. Psychol. 44, 453–495 (1993)

    Article  CAS  Google Scholar 

  5. Nadel, L. & Moscovitch, M. Memory consolidation, retrograde amnesia and the hippocampal complex. Curr. Opin Neurobiol. 7, 217–227 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Teng, E. & Squire, L. R. Memory for places learned long ago is intact after hippocampal damage. Nature 400, 675–677 (1999).An elegant case study of an amnesic patient who has not been able to learn about the geography of the city in which he now lives, but has normal recall and navigational capacities about the city in which he grew up long before he became amnesic.

    Article  CAS  PubMed  Google Scholar 

  7. Reed, J. M. & Squire, L. R. Retrograde amnesia for facts and events: Recent findings from four new cases. J. Neurosci. 18, 3943–3954 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Warrington, E. K. Studies of retrograde memory: A long term view. Proc. Natl Acad. Sci. USA 93, 13523–13526 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Eichenbaum, H. & Cohen, N. J. From Conditioning to Conscious Recollection: Memory Systems of the Brain (Oxford Univ. Press, in the press).

  10. Cohen, N. J. & Squire, L. R. Preserved learning and retention of pattern-analyzing skill in amnesia: dissociation of knowing how and knowing that. Science 210, 207– 210 (1980).

    Article  CAS  PubMed  Google Scholar 

  11. Schacter, D. L. & Tulving, E. in Memory Systems (eds Schacter, D. L. & Tulving, E.) 1–38 (MIT, Cambridge, Massachusetts, 1994).

    Google Scholar 

  12. Chun, M. M & Phelps, E. A. Memory deficits for implicit contextual information in amnesic subjects with hippocampal damage. Nature Neurosci. 2, 844–847 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  13. Knowlton, B. J., Mangels, J. A. & Squire, L. R. A neostriatal habit learning system in humans. Science 273, 1399–1401 ( 1996).This study elegantly dissociates the role of the neostriatal system in mediating the acquisition of habitual responses to complex stimuli and that of the hippocampal system in mediating declarative memory.

    Article  CAS  PubMed  Google Scholar 

  14. Woodruff-Pak, D. S., Papka, M. & Ivry, R. B. Cerebellar involvement in eyeblink classical conditioning in humans. Neuropsychology 10, 443– 458 (1996).

    Article  Google Scholar 

  15. Gabrieli J. in Models of information processing in the basal ganglia (eds Houk, J. C., Davis, J. L. & Beiser, D. G.) 227–294 (MIT, Cambridge, Massachusetts, 1995).

    Google Scholar 

  16. Hallet, M., Pascual-leone, A. & Topka, H. in The Acquisition of Motor Behavior in Vertebrates (eds Bloedel, J. R., Ebner, T. J. & Wise, S. P.) 289– 302 (MIT, Cambridge, Massachusetts, 1996).

    Google Scholar 

  17. Salmon, D. P. & Butters, N. Neurobiology of skill and habit learning. Curr. Opin Neurobiol. 5, 184– 190 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Bechera, A. et al. Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocmapus in humans. Science 269, 1115–1118 (1995). A set of case studies show the separation of memory systems in humans, one involving mediation of fear conditioning by the amygdala and another involving mediation of declarative memory by the hippocampus.

    Article  Google Scholar 

  19. Cahill, L. F., Babinksy, R., Markowitsch, H. J. & McGaugh, J. L. The amygdala and emotional memory. Nature 377, 6547 (1995).

    Article  Google Scholar 

  20. Vallar, G. & Shallice, T. Neuropsychological Impairments of Short-Term Memory (Cambridge Univ. Press, Cambridge, 1990).

    Book  Google Scholar 

  21. Tulving, E. & Schacter, D. L. Priming and human memory systems . Science 247, 301–306 (1990).

    Article  CAS  PubMed  Google Scholar 

  22. Squire, L. Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99, 195– 231 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Eichenbaum, H., Alvarez, P. & Ramus, S. in Handbook of Neuropsychology 2nd edn Vol. 4 (ed. Cermak, L.) (Elsevier Sciences, in the press).

  24. Gaffan, D. Recognition impaired and association intact in the memory of monkeys after transection of the fornix. J. Comp. Physiol. Psychol. 86, 1100–1109 (1974).

    Article  CAS  PubMed  Google Scholar 

  25. Mishkin, M. Memory in monkeys severely impaired by combined but not separate removal of the amygdala and hippocampus. Nature 273, 297–298 (1978).

    Article  CAS  PubMed  Google Scholar 

  26. Zola, S. M. et al. Impaired recognition memory in monkeys after damage limited to the hippocampal region. J. Neurosci. 20, 451–463 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kesner, R. P. & Novak, J. M. Serial position curve in rats: Role of the dorsal hippocampus. Science 218, 173–175 (1982).

    Article  CAS  PubMed  Google Scholar 

  28. Aggleton, J. P. Hunt, P. R. & Rawlins, J. N. P. The effects of hippocampal lesions upon spatial and non-spatial tests of working memory. Behav. Brain Res. 19, 133–146 (1986).

    Article  CAS  PubMed  Google Scholar 

  29. Steele, R. J. & Morris, R. G. M. Delay dependent impairment in matching-to-place task with chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5. Hippocampus 9, 118 –136 (1999).This study suggests a specific role for NMDA-receptor dependent plasticity as critical to the role of the hippocampus in memory for single episodes.

    Article  CAS  PubMed  Google Scholar 

  30. Cho, Y. H., Beracochea, D. & Jaffard, R. Extended temporal gradient for the retrograde and anterograde amnesia produced by ibotenate entorhinal cortex lesions in mice. J. Neurosci. 13, 1759–1766 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim, J. J. & Fanselow, M. S. Modality-specific retrograde amnesia of fear. Science 256, 675– 677 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Kim, J. J., Clark, R. E. & Thompson, R. F. Hippocamectomy impairs the memory of recently, but not remotely, aquired trace eyeblink conditioned responses. Behav. Neurosci. 109, 195–203 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  33. Winocur, G. Anterograde and retrograde amnesia in rats with dorsal hippocampal or dorsomedial thalamic lesions. Behav. Brain Res. 38, 145–154 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Zola-Morgan, S. & Squire, L. R. The primate hippocampal formation: evidence for a time-limited role in memory storage . Science 250, 288–290 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Milner, B., Squire, L. R. & Kandel, E. R. Cognitive neuroscience and the study of memory. Neuron 20, 445–468 ( 1999).A recent review of neurobiological studies of memory, outlining progress in understanding both the molecular and neuropsychological aspects of hippocampal function since the discovery of the patient H.M.

    Article  Google Scholar 

  36. Eichenbaum, H. Declarative memory: insights from cognitive neurobiology. Annu. Rev. Psychol. 48, 547–572 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. White, N. M. Mnemonic functions of the basal ganglia. Curr. Opin Neurobiol. 7, 164–172 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  38. LeDoux, J. E. Brain mechanisms of emotion and emotional learning. Curr. Opin Neurobiol. 2, 191–197 ( 1992).

    Article  CAS  PubMed  Google Scholar 

  39. Davis, M. The role of the amygdala in emotional learning. Int. Rev. Neurobiol. 36, 225–266 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  40. McDonald, R. J. & White, N. M. A triple dissociation of memory systems: Hippocampus, amygdala, and dorsal striatum. Behav. Neurosci. 107, 3–22 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. McGaugh, J. L., Cahill, L. & Roozendaal, B. Involvement of the amygdala in memory storage: Interactions with other brain systems. Proc. Natl Acad. Sci. USA 93, 13508–13514 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Burwell, R. D., Witter, M. P. & Amaral, D. G. Perirhinal and postrhinal cortices in the rat: A review of the neuroanatomical literature and comparison with findings from the monkey brain. Hippocampus 5, 390– 408 (1995).This paper reviews the anatomy of the hippocampal system in rodents and primates, showing striking similarities in the basic flow of information, as well as species differences in the cortical inputs to the hippocampal region.

    Article  CAS  PubMed  Google Scholar 

  43. Suzuki, W. A. Neuroanatomy of the monkey entorhinal, perirhinal, and parahippocampal cortices: Organization of cortical inputs and interconnections with amygdala and striatum . Semin. Neurosci. 8, 3– 12 (1996).

    Article  Google Scholar 

  44. Mishkin, M. A memory system in the monkey. Phil. Trans R. Soc. Lond. B 298, 85–95 (1982).

    Article  Google Scholar 

  45. Otto, T. & Eichenbaum, H. Complementary roles of orbital prefrontal cortex and the perirhinal-entorhinal cortices in an odor-guided delayed non-matching to sample task. Behav. Neurosci. 106, 763–776 (1992).

    Article  Google Scholar 

  46. Mumby, D. G., Wood, E. R. & Pinel, J. P. Object recognition memory is only mildly impaired in rats with lesions of the hipocampus and amygdala. Psychobiology 20, 18–27 ( 1992).

    Google Scholar 

  47. Rothblat, L. A. & Kromer, L. F. Object recognition memory in the rat: The role of the hippocampus. Behav. Brain Res. 42, 25–32 ( 1991).

    Article  CAS  PubMed  Google Scholar 

  48. Meunier, M., Bachevalier, J., Mishkin, M. & Murray, E. A. Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys. J. Neurosci. 13, 5418–5432 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zola-Morgan, S., Squire, L. R., Amaral, D. G. & Suzuki, W. Lesions of perirhinal and parahippocampal cortex that spare the amygdala and the hippocampal formation produce severe memory impairment. J. Neurosci. 9, 4355–4370 ( 1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Murray, E. A. & Mishkin, M. Object recognition and location memory in monkeys with excitotoxic lesions of the amygdala and hippocampus . J. Neurosci. 18, 6568– 6582 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gaffan, D. Dissociated effects of perirhinal cortex ablation, fornix transection and amygdalectomy: Evidence for multiple memory systems in the primate temporal lobe. Exp. Brain Res. 99, 411– 422 (1994).

    CAS  PubMed  Google Scholar 

  52. Buffalo, E. A., Ramus, S. J., Clark, R. E., Teng, E., Squire, L. R. & Zola, S. M. Dissociation between the effects of damage to the perirhinal cortex and area TE. Learning Memory 6, 572–599 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Eichenbaum, H. & Bunsey, M. On the binding of associations in memory: Clues from studies on the role of the hippocampal region in paired-associate learning. Curr. Direct. Psychol. Sci. 4, 19–23 (1995 ).

    Article  Google Scholar 

  54. Murray, E. A. & Bussey, T. J. Perceptual-mnemonic functions of the perirhinal cortex. Trends Cogn. Sci. 3, 142–151 (1999).A review of our understanding of the role of one part of the parahippocampal region in memory, as an intermediary between cortical perceptual processing and hippocampal memory processing.

    Article  CAS  PubMed  Google Scholar 

  55. Young, B. J., Otto, T., Fox, G. D. & Eichenbaum, H. Memory Representation within the Parahippocampal Region. J. Neurosci. 17, 5183–5195 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Brown, M. W. & Xiang, J.-Z. Recognition memory: Neuronal substrates of the judgement of prior occurrence. Prog. Neurobiol. 55, 149–189 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Desimone, R., Miller, E. K., Chelazzi, L. & Lueschow, A. in The Cognitive Neurosciences (ed. Gazzaniga, M. S.) 475– 486 (MIT, Cambridge, Massachusetts, 1995).

    Google Scholar 

  58. Fuster, J. M. Memory in the cerebral cortex (MIT, Cambridge, Massachusetts 1995).

    Google Scholar 

  59. Suzuki, W. & Eichenbaum, H. The neurophysiology of memory . Ann. New York Acad. Sci. 911, 175– 191 (2000).

    Article  CAS  Google Scholar 

  60. Ramus, S. J. & Eichenbaum, H. Neural correlates of olfactory recognition memory in the rodent orbitofrontal cortex. J. Neurosci. (in the press).

  61. Miller, E. K., Erickson, C. A. & Desimone, R. Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J. Neurosci. 16, 5154–5167 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Miyashita, Y. & Chang, H. S. Neuronal correlate of pictorial short-term memory in the primate temporal cortex. Nature 331, 68–70 (1988).

    Article  CAS  PubMed  Google Scholar 

  63. Brown, M. W., Wilson, F. A. W. & Riches, I. P. Neuronal evidence that inferomedial temporal cortex is more important than hippocampus in certain processes underlying recognition memory. Brain Res. 409, 158– 162 (1987).

    Article  CAS  PubMed  Google Scholar 

  64. Miller, E. K., Li, L. & Desimone, R. A neural mechanism for working and recognition memory in inferior temporal cortex. Science 254, 1377–1379 (1991).

    Article  CAS  PubMed  Google Scholar 

  65. Rampon, C. et al. Enrichment induces structural changes and recovery from non-spatial memory deficits in CA1 NMDAR1-knockout mice. Nature Neurosci. 3, 238–244 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Gaffan, D. & Harrison, S. Place memory and scene memory: Effects of fornix transection in the monkey. Exp. Brain Res. 74, 202–212 (1989).

    Article  CAS  PubMed  Google Scholar 

  67. Gaffan, D. Scene-specific memory for objects: A model of episodic memory impairment in monkeys with fornix transection. J. Cogn. Neurosci. 6, 305–320 (1994).

    Article  CAS  PubMed  Google Scholar 

  68. Wan, H., Aggleton, J. P. & Malcolm, W. B. Different contributions of the hippocampus and perirhinal cortex to recognition memory. J. Neurosci. 19, 1142–1148. (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Casaday, H. J. & Rawlins, J. N. P. Fornix-fimbria section and working memory deficits in rats: Stimulus complexity and stimulus size. Behav. Neurosci. 109, 594– 606 (1995).

    Article  Google Scholar 

  70. Vargha-Khadem, F. et al. Differential Effects of Early Hippocampal Pathology on Episodic and Semantic Memory. Science 277, 376– 380 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Squire, L. R. & Zola, S. M. Episodic memory, semantic memory and amnesia. Hippocampus 8, 205– 211 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M. & Tanila, H. The hippocampus, memory, and place cells: Is it spatial memory or memory space? Neuron 23, 1– 20 (1999).A recent review of the phenomenon of place cells that interprets the findings on location-specific activity of hippocampal neurons in rodents within the broader perspective of memory processing by the hippocampus in animals and humans.

    Article  Google Scholar 

  73. Morris, R. G. M., Garrud, P., Rawlins, J. P. & O'Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683 ( 1982).

    Article  CAS  PubMed  Google Scholar 

  74. Eichenbaum, H., Stewart, C. & Morris, R. G. M. Hippocampal representation in spatial learning . J. Neurosci. 10, 331– 339 (1990).

    Article  Google Scholar 

  75. Galef, B. G., Mason, J. R., Preti, G. & Bean, N. J. Carbon disulfide: A semiochemical mediating socially-induced diet choice in rats. Physiol. Behav. 42, 119–124 (1988).

    Article  CAS  PubMed  Google Scholar 

  76. Bunsey, M. & Eichenbaum, H. Selective damage to the hippocampal region blocks long term retention of a natural and nonspatial stimulus-stimulus association. Hippocampus 5, 546– 556 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Bunsey, M. & Eichenbaum, H. Conservation of hippocampal memory function in rats and humans. Nature 379, 255–257 (1996).Insights into the fundamental role of the hippocampus in memory in animals, showing a common role in organizing and flexibly expressing memories about distinct learning experiences.

    Article  CAS  PubMed  Google Scholar 

  78. Dusek, J. A. & Eichenbaum, H. The hippocampus and memory for orderly stimulus relations. Proc. Natl Acad. Sci. USA 94, 7109–7114 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schacter, D. L. in Memory Systems of the Brain (eds N. M. Weinberger, J. L. McGaugh, G. Lynch) 351–380. (Guilford, 1985).

    Google Scholar 

  80. Gothard, K. M., Skaggs, W. E. & McNaughton, B. L. Dynamics of mismatch correction in the hippocampal ensemble code for space: interaction between path integration and environmental cues. J. Neurosci. 16, 8027– 40 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. McNaughton, B. L., Barnes, C. A. & O'Keefe, J. The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats. Exp. Brain Res. 52, 41–49 (1983).

    Article  CAS  PubMed  Google Scholar 

  82. Muller, R. U., Bostock, E., Taube, J. S. & Kubie, J. L. On the directional firing properties of hippocampal place cells. J. Neurosci. 14, 7235–7251 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wiener, S. I., Paul, C. A. & Eichenbaum, H. Spatial and behavioral correlates of hippocampal neuronal activity. J. Neurosci. 9, 2737– 2763 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Berger, T. W., Alger, B. & Thompson, R. F. Neuronal substrate of classical conditioning in the hippocampus. Science 192, 483– 485 (1976).

    Article  CAS  PubMed  Google Scholar 

  85. Wood, E. R., Dudchenko, P. A. & Eichenbaum, H. The global record of memory in hippocampal neuronal activity. Nature 397, 613– 616.(1999).

    Article  CAS  PubMed  Google Scholar 

  86. Hampson, R. E., Simeral, J. D. & Deadwyler, A. Distribution of spatial and nonspatial information in dorsal hippocampus. Nature 402, 610– 614 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Wood, E. R., Dudchenko, P. A., Robitsek, J. R. & Eichenbaum, H. Hippocampal neurons encode information about different types of memory episodes occuring in the same location. Neuron (in the press).

  88. Miller, E. K. The prefrontal cortex: Complex properties for complex behavior. Neuron 22, 15–17 ( 1999).A review of recent successes in understanding the nature of information coding in the prefrontal cortex, showing an integrated role in memory and cognition.

    Article  CAS  PubMed  Google Scholar 

  89. McClelland, J. L., McNaughton, B. L. & O'Reilly, R. C. Why there are complimentary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419–457 (1995).This paper reviews efforts to create computational models of hippocampal function in memory, and outlines a potential role for the hippocampal network in organizing memories stored in the cerebral cortex.

    Article  PubMed  Google Scholar 

  90. Squire, L. R. & Alvarez, P. Retrograde amnesia and memory consolidation: a neurobiological perspective. Curr. Opin Neurobiol. 5, 169–177 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. Lisman, J. E. Relating hippocampal circuitry to function: Recall of memory sequences by recperocal dentate-CA3 interactions. Neuron 22, 233–242 (1999).This theoretical review suggests a mechanism by which hippocampal circuitry, plasticity and neuronal firing properties can be combined to understand how the hippocampus mediates its critical role in episodic memory.

    Article  CAS  PubMed  Google Scholar 

  92. Wallenstein, G. V., Eichenbaum, H. & Hasselmo, M. E. The hippocampus as an associator of discontiguous events. Trends Neurosci. 21, 317– 323 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Clayton, N. S. & Dickinson, A. Episodic-like memory during cache recovery by scrub jays. Nature 395, 272–274 (1998). This study offers a way to study episodic-like memory in non-human species, suggesting that episodic memory can be defined across species as a representation of the ‘what’, ‘where’ and ‘when’ of a single event.

    Article  CAS  PubMed  Google Scholar 

  94. Higuchi, S. & Miyashita, Y. Formation of mnemonic neural responses to visual paired associates in inferotemporal cortex is impaired by perirhinal and entorhinal lesions. Proc. Natl Acad. Sci. USA 93 , 739–743 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mishkin, M. & Delacour, J. An analysis of short-term visual memory in the monkey. J. Exp. Psychol. Anim. Behav. Process 1, 326–334 (1975).

    Article  CAS  PubMed  Google Scholar 

  96. O'Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 ( 1971).

    Article  CAS  PubMed  Google Scholar 

  97. Muller, R. U., Kubie, J. L. & Ranck, J. B. Jr Spatial firing patterns of hippocampal complex spike cells in a fixed environment. J. Neurosci. 7, 1935–1950 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Muller, R. U. A quarter of a century of place cells. Neuron 17, 813–822 (1996).

    Article  CAS  PubMed  Google Scholar 

  99. O'Keefe, J. A. & Nadel, L. The Hippocampus as a Cognitive Map (Oxford Univ. Press, Oxford 1978 ).

    Google Scholar 

  100. Markus, E. J. et al. Interactions between location and task affect the spatial and directional firing of hippocampal neurons. J. Neurosci. 15, 7079–7094 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fried, I., MacDonald, K. A. & Wilson, C. L. Single neuron activity in human hippocampus and amygdala during recognition of faces and objects. Neuron 18, 753–765 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Burwell, R. D. & Amaral, D. G. The cortical afferents of the perirhinal, postrhinal, and entorhinal corices of the rat . J. Comp. Neurol. 398, 179– 205 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Suzuki, W. A. & Amaral, D. G. Perirhinal and parahippocampal cortices of the macaque monkey: Cortical afferents. J. Comp. Neurol. 350, 497–533 (1994).

    Article  CAS  PubMed  Google Scholar 

  104. Amaral, D. G. & Witter, M. P. The three-dimensional organization of the hippocampal formation: A review of anatomical data. J. Neurosci. 31, 571–591(1989).

    Article  CAS  Google Scholar 

  105. Bliss, T. V. P. & Collingridge, G. L. A synaptic model of memory: Long-term potentiation in the hippocampus. Nature 361, 31–39 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  106. Aggleton, J. P. & Brown, M. W. Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav. Brain Sci. 22, 425–489 ( 1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from the NIMH and the NIA.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Howard Eichenbaum lab page

John O'Keefe lab page

Richard Morris lab page

ENCYCLOPEDIA OF LIFE SCIENCES

Learning and memory

Amnesia

Neural activity and the development of brain circuits

Neural networks and behaviour

Long-term potentiation

Protein phosphorylation and long-term synaptic plasticity

Glossary

EPISODIC REPRESENTATIONS

Neural firing patterns, which encode the sequence of events that compose a unique, personal experience.

SEMANTIC KNOWLEDGE

An organization of factual information independent of the specific episodes in which that information was acquired.

PROCEDURAL MEMORY

The representation of a series of actions or perceptual processing functions that occur unconsciously, and typically result in increased speed or accuracy with repetitions.

EMOTIONAL MEMORY

The representation of a positive or negative affect associated with specific stimuli. Typically not subject to conscious recollection but reflected in attraction, avoidance or autonomic nervous system activation.

WORKING MEMORY

The representation of items held in consciousness during experiences or after retrieval of memories. Short-lasting and associated with active rehearsal or manipulation of information.

PRIMING

The facilitation of recognition, reproduction or biases in selection of stimuli that have recently been perceived.

SPATIAL LEARNING

Acquisition of information about spatial relations among objects in the environment, typically reflected in the ability to navigate through the environment using new routes.

PLACE CELLS

Hippocampal principal cells that fire selectively when an animal is in a particular location in its environment.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichenbaum, H. A cortical–hippocampal system for declarative memory. Nat Rev Neurosci 1, 41–50 (2000). https://doi.org/10.1038/35036213

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35036213

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing