Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hsp27 negatively regulates cell death by interacting with cytochrome c

Abstract

Mammalian cells respond to stress by accumulating or activating a set of highly conserved proteins known as heat-shock proteins (HSPs). Several of these proteins interfere negatively with apoptosis. We show that the small HSP known as Hsp27 inhibits cytochrome-c-mediated activation of caspases in the cytosol. Hsp27 does not interfere with granzyme-B-induced activation of caspases, nor with apoptosis-inducing factor-mediated, caspase-independent, nuclear changes. Hsp27 binds to cytochrome c released from the mitochondria to the cytosol and prevents cytochrome-c-mediated interaction of Apaf-1 with procaspase-9. Thus, Hsp27 interferes specifically with the mitochondrial pathway of caspase-dependent cell death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hsp27-mediated inhibition of apoptosis.
Figure 2: Hsp27 inhibits cytochrome c-mediated caspase activation in a cell-free system.
Figure 3: Activation of caspases by granzyme B in cell-free extracts.
Figure 4: Interaction of Hsp27 with the mitochondria.
Figure 5: Influence of Hsp27 on the AIF pathway.
Figure 6: Interaction of Hsp27 with cytochrome c in whole-cell and cell-free extracts.
Figure 7: Influence of Hsp27 on the formation of the apoptosome and determination of the region of Hsp27 necessary for cytochome c binding.

Similar content being viewed by others

References

  1. Nicholson, D. W. & Thornberry, N. A. Caspases: killer proteases. Trends Biochem. Sci. 22, 299–306 (1997).

    Article  CAS  Google Scholar 

  2. Thornberry, N. A. & Lazebnik, Y. Caspases: enemies within. Science 281, 1312– 1316 (1998).

    Article  CAS  Google Scholar 

  3. Kroemer, G., Dallaporta, B. & Resche-Rigon, M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 60, 619 –642 (1998).

    Article  CAS  Google Scholar 

  4. Shimizu, S., Narita, M. & Tsujimoto, Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399, 483–487 (1999).

    Article  CAS  Google Scholar 

  5. Marzo, I. et al. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281, 2027– 2031 (1998).

    Article  CAS  Google Scholar 

  6. Reed, J. C. Cytochrome c: can't live with it-can't live without it. Cell 91, 559–562 (1997).

    Article  CAS  Google Scholar 

  7. Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 (1997).

    Article  CAS  Google Scholar 

  8. Green, D. R. Apoptotic pathways: the road to ruin. Cell 94, 695–698 (1998).

    Article  CAS  Google Scholar 

  9. Ghayur, T. et al. Proteolytic activation of protein kinase C delta by an ICE/CED 3-like protease induces characteristics of apoptosis. J. Exp. Med. 184, 2399–2404 (1996).

    Article  CAS  Google Scholar 

  10. Liu, X., Zou, C., Slaughter, C. & Xang, X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89, 175– 184 (1997).

    Article  CAS  Google Scholar 

  11. Eymin, B. et al. Caspase-induced proteolysis of the cyclin-dependent kinase inhibitor p 27kip1 mediates its anti-apoptotic activity. Oncogene 18, 4839–4847 (1999).

    Article  CAS  Google Scholar 

  12. Susin, S. A. et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441– 446 (1999).

    Article  CAS  Google Scholar 

  13. Susin, S. A. et al. Mitochondrial release of caspase-2 and -9 during the apoptotic process. J. Exp. Med. 189, 381– 394 (1999).

    Article  CAS  Google Scholar 

  14. Parsell, D. A. & Lindquist, S. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27, 437–496 (1993).

    Article  CAS  Google Scholar 

  15. Arrigo, A. P. & Landry, J. In Heat-shock Proteins: Structure, Function and Regulation. (eds Morimoto, R. I., Tissière, A. & Georgopoulos, C.) 335–373 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1994).

    Google Scholar 

  16. Spector, N. L. et al. Growth arrest of human B lymphocytes is accompanied by induction of the low molecular weight mammalian heat shock protein (Hsp 28). J. Immunol. 148, 1668–1673 (1992).

    CAS  Google Scholar 

  17. Tetu, B., Lacasse, B., Bouchard, H. L., Lagace, R., Huot, J. & Landry, J. Prognostic influence of HSP-27 expression in malignant fibrous histiocytoma: a clinicopathological and immunohistochemical study . Cancer Res. 52, 2325– 2328 (1992).

    CAS  Google Scholar 

  18. Garrido, C. et al. Heat shock protein 27 enhances the tumorigenicity of immunogenic rat colon carcinoma cell clones. Cancer Res. 58, 5495–5499 (1998).

    CAS  Google Scholar 

  19. Mehlen, P. et al. Analysis of the resistance to heat and hydrogen peroxide stresses in COS cells transiently expressing wild type or deletion mutants of the Drosophila 27-kDa heat-shock protein. Eur. J. Biochem. 215, 277–284 (1993).

    Article  CAS  Google Scholar 

  20. Mehlen, P., Schulze-Osthoff, K. & Arrigo, A.P. Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1- and staurosporine-induced cell death . J. Biol. Chem. 271, 16510– 16514 (1996).

    Article  CAS  Google Scholar 

  21. Huot, J., Roy, G., Lambert, H., Chretien, P. & Landry, J. Increased survival after treatments with anticancer agents of Chinese hamster cells expressing the human Mr 27,000 heat shock protein. Cancer Res. 51, 5245– 5252 (1991).

    CAS  Google Scholar 

  22. Oesterreich, S., Weng, C. N., Qiu, M., Hilsenbeck, S. G., Osborne, C. K. & Fuqua, S. A. The small heat shock protein hsp27 is correlated with growth and drug resistance in human breast cancer cell lines. Cancer Res. 53, 4443–4448 (1993).

    CAS  Google Scholar 

  23. Garrido, C. et al. Inconstant association between 27-kDa heat-shock protein (Hsp27) content and doxorubicin resistance in human colon cancer cells. The doxorubicin-protecting effect of Hsp27. Eur. J. Biochem. 237, 653 –659 (1996).

    Article  CAS  Google Scholar 

  24. Garrido, C., Ottavi, P., Fromentin, A., Hammann, A., Arrigo, A. P., Chauffert, B. & Mehlen, P. Hsp27 as a mediator of confluence-dependent resistance to cell death induced by anticancer drugs. Cancer Res. 57, 2661 –2667 (1997).

    CAS  Google Scholar 

  25. Mehlen, P., Kretz-Remy, C., Preville, X. & Arrigo, A. P. Human hsp27, Drosophila hsp27 and human alphaB-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNFalpha-induced cell death. EMBO J. 15, 2695–2706 (1996).

    Article  CAS  Google Scholar 

  26. Rogalla, T. et al. Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation . J. Biol. Chem. 274, 18947– 18956 (1999).

    Article  CAS  Google Scholar 

  27. Garrido, C., Bruey, J. M., Fromentin, A., Hammann, A., Arrigo, A. P. & Solary, E. Hsp27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J. 13, 2061– 2070 (1999).

    Article  CAS  Google Scholar 

  28. Medema, J. P. et al. Cleavage of FLICE (caspase-8) by granzyme B during cytotoxic T lymphocyte-induced apoptosis. Eur. J. Immunol. 27, 3492– 3498 (1997).

    Article  CAS  Google Scholar 

  29. Van de Craen, M. et al. Cleavage of caspase family members by granzyme B: a comparative study in vitro. Eur. J. Immunol. 27, 1296 –1299 (1997).

    Article  CAS  Google Scholar 

  30. Atkinson, E. A. et al. Cytotoxic T lymphocyte-assisted suicide. Caspase 3 activation is primarily the result of the direct action of granzyme B. J. Biol. Chem. 273, 21261–21266 (1998).

    Article  CAS  Google Scholar 

  31. Hennig, B. & Neupert, W. Biogenesis of cytochrome c in Neurospora crassa. Methods Enzymol. 97, 261–274 (1983).

    Article  CAS  Google Scholar 

  32. Zavialov, A. et al. The effect of the intersubunit disulfide bond on the structural and functional properties of the small heat shock protein Hsp 25. Int. J. Biol. Macromol. 22, 163–73 (1998).

    Article  CAS  Google Scholar 

  33. Xanthoudakis, S. et al. Hsp 60 accelerates the maturation of pro-caspase-3 by upstream activator proteases during apoptosis. EMBO J. 18, 2049–2056 (1999).

    Article  CAS  Google Scholar 

  34. Samali, A., Cai, J., Zhivotovsky, B., Jones, D. P. & Orrenius, S. Presence of a pre-apoptotic complex of pro-caspase-3, Hsp 60 and Hsp 10 in the mitochondrial fraction of jurkat cells. EMBO J. 18, 2040–2048 ( 1999).

    Article  CAS  Google Scholar 

  35. Jäättela, M., Wissing, D., Kokholm, K., Kallunki, T. & Egeblad, M. Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J. 17, 6124–6134 (1998).

    Article  Google Scholar 

  36. Stuart, J. K. et al. Characterization of interactions between the anti-apoptotic protein BAG- 1 and Hsc70 molecular chaperones. J. Biol. Chem. 273, 22506–22514 (1998).

    Article  CAS  Google Scholar 

  37. Konishi, H. et al. Activation of protein kinase B (Akt/RAC-protein kinase) by cellular stress and its association with heat shock protein Hsp27. FEBS Lett. 410, 493–498 (1997).

    Article  CAS  Google Scholar 

  38. Cardone, M. H., Roy, N., Stennicke, H. R., Salvesen, G. S., Franke, T. F., Stanbridge, E., Frisch, S. & Reed, J. C. Regulation of cell death protease caspase-9 by phosphorylation. Science 282, 1318–1321 (1998).

    Article  CAS  Google Scholar 

  39. Kennedy, S. G., Kandel, E. S., Cross, T. K. & Hay, N. Akt/protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Mol. Cell. Biol. 19, 5800– 5810 (1999).

    Article  CAS  Google Scholar 

  40. Qin, H., Srinivasula, S. M., Wu, G., Fernandes-Alnemri, T., Alnemri, E. S. & Shi, Y. Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1. Nature 399, 549–557 (1999).

    Article  CAS  Google Scholar 

  41. Hu, Y., Benedict, M. A., Ding, L. & Nunez, G. Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase- 9 activation and apoptosis. EMBO J. 18, 3586 –3595 (1999).

    Article  CAS  Google Scholar 

  42. Slee, E. A. et al. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9- dependent manner. J. Cell. Biol. 144, 281– 292 (1999).

    Article  CAS  Google Scholar 

  43. Deveraux, Q. L. et al. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J. 17, 2215–2223 (1998).

    Article  CAS  Google Scholar 

  44. Hu, Y., Benedict, M. A., Wu, D., Inohara, N., & Nunez, G. Bcl-XL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation. Proc. Natl Acad. Sci.USA 95, 4386–4391 (1998).

    Article  CAS  Google Scholar 

  45. De Maria, R. et al. Negative regulation of erythropoiesis by caspase-mediated cleavage of GATA-1. Nature 401, 489– 493 (1999).

    Article  CAS  Google Scholar 

  46. Zheng, T. S., Hunot, S., Kuida, K. & Flavell, R. A. Caspases knockouts: matters of life and death. Cell Death Diff. 6, 1043–1053 (1999).

    Article  CAS  Google Scholar 

  47. Thor, A. et al. Stress response protein (hsp-27) determination in primary human breast carcinomas: clinical, histologic, and prognostic correlations. J. Natl Cancer Inst. 83, 170–178 (1991).

    Article  CAS  Google Scholar 

  48. Love, S. & King, R. J. A 27 kDa heat shock protein that has anomalous prognostic powers in early and advanced breast cancer. Br. J. Cancer 69, 743–748 (1994).

    Article  CAS  Google Scholar 

  49. Martin, F., Caignard, A., Jeannin, J.F., Leclerc, A. & Martin, M. Selection by trypsin of two sublines of rat colon cancer cells forming progressive or regressive tumors. Int. J. Cancer 36, 373–377 (1985).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Elisabeth Bates, Olivier Sordet and Cédric Rébé for technical help, and Alena Pance and Kathryn Nason-Burchenal for helpful advices. This work was supported by grants from INSERM, Conseil Régional de Bourgogne, ARC (6515 and 5204), Comités de Côte d'Or, Saône et Loire, Nièvre de la Ligue Nationale Contre le Cancer et ARERS (E.S.), as well as special grants from the Ligue Nationale contre le Cancer (G.K. and E.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Garrido.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruey, JM., Ducasse, C., Bonniaud, P. et al. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2, 645–652 (2000). https://doi.org/10.1038/35023595

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35023595

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing