Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identification of receptors for neuromedin U and its role in feeding

Abstract

Neuromedin U (NMU) is a neuropeptide with potent activity on smooth muscle which was isolated first from porcine spinal cord and later from other species1,2,3,4,5,6,7,8. It is widely distributed in the gut and central nervous system9,10. Peripheral activities of NMU include stimulation of smooth muscle1, increase of blood pressure1, alteration of ion transport in the gut11, control of local blood flow12,13 and regulation of adrenocortical function14. An NMU receptor has not been molecularly identified. Here we show that the previously described orphan G-protein-coupled receptor FM-3 (ref. 15) and a newly discovered one (FM-4) are cognate receptors for NMU. FM-3, designated NMU1R, is abundantly expressed in peripheral tissues whereas FM-4, designated NMU2R, is expressed in specific regions of the brain. NMU is expressed in the ventromedial hypothalamus in the rat brain, and its level is significantly reduced following fasting. Intracerebroventricular administration of NMU markedly suppresses food intake in rats. These findings provide a molecular basis for the biochemical activities of NMU and may indicate that NMU is involved in the central control of feeding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence comparison of FM-3 and FM-4.
Figure 2: Functional and binding analysis.
Figure 3: Expression of NMU1R and NMU2R.
Figure 4: In situ hybridization analysis of NMU in the rat brain.
Figure 5: Effect of ICV-administrated NMU in rats.

Similar content being viewed by others

References

  1. Minamino, N., Kangawa, K. & Matsuo, H. Neuromedin U-8 and U-25: novel uterus stimulating and hypertensive peptides identified in porcine spinal cord. Biochem. Biophys. Res. Commun. 130, 1078–1085 (1985).

    Article  CAS  Google Scholar 

  2. Domin, J., Ghatei, M. A., Chohan, P. & Bloom, S. R. Characterization of neuromedin U like immunoreactivity in rat, porcine, guinea-pig and human tissue extracts using a specific radioimmunoassay. Biochem. Biophys. Res. Commun. 140, 1127–1134 (1986).

    Article  CAS  Google Scholar 

  3. Conlon, J. M. et al. Primary structure of neuromedin U from the rat. J. Neurochem. 51, 988–991 (1988).

    Article  CAS  Google Scholar 

  4. Minamino, N., Kangawa, K., Honzawa, M. & Matsuo, H. Isolation and structural determination of rat neuromedin U. Biochem. Biophys. Res. Commun. 156, 355–360 ( 1988).

    Article  CAS  Google Scholar 

  5. Domin, J. et al. The distribution, purification, and pharmacological action of an amphibian neuromedin U. J. Biol. Chem. 264, 20881–20885 (1989).

    CAS  PubMed  Google Scholar 

  6. O'Harte, F. et al. Primary structure and pharmacological activity of a nonapeptide related to neuromedin U isolated from chicken intestine. Peptides 12, 809–812 ( 1991).

    Article  CAS  Google Scholar 

  7. Kage, R., O'Harte, F., Thim, L. & Conlon, J. M. Rabbit neuromedin U-25: lack of conservation of a posttranslational processing site. Regul. Pept. 33, 191–198 (1991).

    Article  CAS  Google Scholar 

  8. Domin, J., Benito-Orfila, M. A., Nandha, K. A., Aitken, A. & Bloom, S. R. The purification and sequence analysis of an avian neuromedin U. Regul. Pept. 41, 1–8 (1992).

    Article  CAS  Google Scholar 

  9. Honzawa, M., Sudoh, T., Minamino, N., Tohyama, M. & Matsuo, H. Topographic localization of neuromedin U-like structures in the rat brain: an immunohistochemical study. Neuroscience 23, 1103–1122 (1987).

    Article  CAS  Google Scholar 

  10. Ballesta, J. et al. Occurrence and developmental pattern of neuromedin U-immunoreactive nerves in the gastrointestinal tract and brain of the rat. Neuroscience 25, 797–816 ( 1988).

    Article  CAS  Google Scholar 

  11. Brown, D. R. & Quito, F. L. Neuromedin U octapeptide alters ion transport in porcine jejunum. Eur. J. Pharmacol. 155, 159–162 (1988).

    Article  CAS  Google Scholar 

  12. Sumi, S. et al. Effect of synthetic neuromedin U-8 and U-25, novel peptides identified in porcine spinal cord, on splanchnic circulation in dogs. Life Sci. 41, 1585–1590 ( 1987).

    Article  CAS  Google Scholar 

  13. Gardiner, S. M., Compton, A. M., Bennett, T., Domin, J. & Bloom, S. R. Regional hemodynamic effects of neuromedin U in conscious rats. Am. J. Physiol. 258 , R32–38 (1990).

    CAS  PubMed  Google Scholar 

  14. Malendowicz, L. K. et al. Effects of neuromedin U (NMU)-8 on the rat hypothalamo-pituitary-adrenal axis. Evidence of a direct effect of NMU-8 on the adrenal gland. Neuropeptides 26, 47–53 (1994).

    Article  CAS  Google Scholar 

  15. Tan, C. P. et al. Cloning and characterization of a human and murine T-cell orphan G- protein-coupled receptor similar to the growth hormone secretagogue and neurotensin receptors. Genomics 52, 223–229 (1998).

    Article  CAS  Google Scholar 

  16. Retief, J. D., Lynch, K. R. & Pearson, W. R. Panning for genes—A visual strategy for identifying novel gene orthologs and paralogs. Genome Res. 9, 373–382 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Brady, L. S., Smith, M. A., Gold, P. W. & Herkenham, M. Altered expression of hypothalamic neuropeptide mRNAs in food- restricted and food-deprived rats. Neuroendocrinology 52, 441–447 (1990).

    Article  CAS  Google Scholar 

  18. Kristensen, P. et al. Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 393, 72– 76 (1998).

    Article  ADS  CAS  Google Scholar 

  19. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Chavez, M., Seeley, R. J. & Woods, S. C. A comparison between effects of intraventricular insulin and intraperitoneal lithium chloride on three measures sensitive to emetic agents. Behav. Neurosci. 109, 547 –550 (1995).

    Article  CAS  Google Scholar 

  21. Stricker, E. M. & Verbalis, J. G. in Handbook of Behavioural Neurobiology of Food and Fluid Intake (ed. Stricker, E. M.) 45–60 (Plenum, New York, 1990).

    Google Scholar 

  22. Kissileff, H. R. Food-associated drinking in the rat. J. Comp. Physiol. Psychol. 67, 284–300 ( 1969).

    Article  CAS  Google Scholar 

  23. Button, D. & Brownstein, M. Aequorin-expressing mammalian cell lines used to report Ca2+ mobilization. Cell. Calcium 14, 663–671 ( 1993).

    Article  CAS  Google Scholar 

  24. Liu, Q. et al. Identification of urotensin II as the endogenous ligand for the orphan G-protein-coupled receptor GPR14. Biochem. Biophys. Res. Commun. 266, 174–178 ( 1999).

    Article  CAS  Google Scholar 

  25. Ungrin, M. D., Singh, L. M., Stocco, R., Sas, D. E. & Abramovitz, M. An automated aequorin luminescence-based functional calcium assay for G-protein-coupled receptors. Anal. Biochem. 272, 34–42 (1999).

    Article  CAS  Google Scholar 

  26. Guan, X. M., Yu, H. & Van der Ploeg, L. H. Evidence of altered hypothalamic pro-opiomelanocortin/neuropeptide Y mRNA expression in tubby mice. Brain Res. Mol. Brain Res. 59, 273–279 (1998).

    Article  CAS  Google Scholar 

  27. Murphy, B. et al. Melanocortin mediated inhibition of feeding behavior in rats. Neuropeptides 32, 491– 497 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Abramowitz and R. Stocco of Merck Frosst Canada for setting up the aequorin assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyun Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howard, A., Wang, R., Pong, SS. et al. Identification of receptors for neuromedin U and its role in feeding . Nature 406, 70–74 (2000). https://doi.org/10.1038/35017610

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35017610

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing