Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hormonal control of Mg2+ transport in the heart

Abstract

MAGNESIUM is abundant in the mammalian body and the second most abundant cation in cells1,2. Because the concentration of intracellular free Mg2+ is relatively high (0.2–1 mM)1,3, Mg2+ is unlikely to act as a second messenger, like Ca2+, by rapidly changing its cytosolic concentration. But changes in Mg2+ do have profound effects on cellular metabolism, structure and bio-energetics3–7. Key enzymes or metabolic pathways1,6–8, mitochon-drial ion transport6,9–11, Ca2+ channel activities in the plasma membrane and intracellular oganelles3,12,13, ATP-requiring reactions, and structural properties of cells4,6,14 and nucleic acids1,3,7 are modified by changes in Mg2+ concentration. Yet, although some information is available from giant cells3,15 and bacteria3,16,17, little is known about the regulation of intracellular Mg2+ in mammalian cells. Here we report a new transport mechanism for Mg2+ across the sarcolemma of cardiac cells in both intact hearts and dissociated myocytes. We show that noradrenaline, through β-adrenergic stimulation and increase of cyclic AMP, stimulates a large efflux of Mg2+ from cardiac cells. This transport is of major dimensions and can move up to 20% of total cellular Mg2+ within a few minutes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Grubs, R. D. & Maguire, M. E. Magnesium 6, 113–117 (1987).

    Google Scholar 

  2. Walker, G. M. Magnesium 5, 9–23 (1986).

    CAS  PubMed  Google Scholar 

  3. Flatman, P. W. J. Memb. Biol. 80, 1–14 (1984).

    Article  CAS  Google Scholar 

  4. Rubin, H. J. cell. Physiol. 89, 613–626 (1977).

    Article  Google Scholar 

  5. Ebel, H. & Gunther, T. J. clin. Chem. clin. Biochem. 18, 257–270 (1980).

    CAS  PubMed  Google Scholar 

  6. Askari, A., Huang, W. H. & McCormick, P. W. J. biol. Chem. 258, 3453–3460 (1983).

    CAS  PubMed  Google Scholar 

  7. Gunther, T. Magnesium 5, 53–59 (1986).

    CAS  PubMed  Google Scholar 

  8. Maguire, M. E. Trends pharmacol. Sci. 5, 73–77 (1984).

    Article  CAS  Google Scholar 

  9. Garlid, K. D. J. biol. Chem. 255, 11273–11279 (1980).

    CAS  PubMed  Google Scholar 

  10. Corkey, B. E., Duszinsky, J., Rich, T. L., Matschinsky, B. & Williamson, J. R. J. biol. Chem. 261, 2567–2574 (1986).

    CAS  PubMed  Google Scholar 

  11. Bond, M., Vadasz, G., Somlyo, A. V. & Somlyo, A. P. J. biol. Chem. 262, 15630–15636 (1987).

    CAS  PubMed  Google Scholar 

  12. White, R. E. & Hartzell, H. C. Science 239, 778–780 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Meissner, G. & Henderson, J. S. J. biol. Chem. 262, 3065–3073 (1987).

    CAS  PubMed  Google Scholar 

  14. Garfinkel, L. & Garfinkel, D. Biochemistry 23, 3547–3552 (1984).

    Article  CAS  Google Scholar 

  15. Scarpa, A. & Brinley, F. J. Fedn Proc. 40, 2646–2652 (1981).

    CAS  Google Scholar 

  16. Lusk, J. E., Williams, J. P. R. & Kennedy, E. P. J. biol. Chem. 243, 2618–2624 (1968).

    CAS  PubMed  Google Scholar 

  17. Jasper, P. & Silver, S. J. Bact. 133, 1323–1328 (1978).

    CAS  PubMed  Google Scholar 

  18. Osnes, J.-B., Refsum, H., Skomedal, T. & Oye, I. Acta pharmacol. toxicol. 42, 235–247 (1978).

    Article  CAS  Google Scholar 

  19. Molinoff, P. B. Drug 28 (Suppl. 2) 1–15 (1984).

    Article  CAS  Google Scholar 

  20. Exton, J. H. Trends pharmacol. Sci. 3, 111–115 (1982).

    Article  CAS  Google Scholar 

  21. Bylund, D. B. Trends pharmacol. Sci. 9, 356–361 (1988).

    Article  CAS  Google Scholar 

  22. Weiner, N. in The Pharmacological Basis of Therapeutics (eds Goodman Gilman, A., Goodman, S. L., Rall, T. W. & Murad, F.) 181–214 (Macmillan, New York, 1985).

    Google Scholar 

  23. Waal-Manning, H. J. Drugs 12, 412–441 (1976).

    Article  CAS  Google Scholar 

  24. Zheng, J-S., De Young, M. B., Wiener, E., Levy, M. N. & Scarpa, A. Ann. N. Y. Acad. Sci. (in the press) (1990).

  25. Jakobs, K. H., Aktories, K. & Schultz G. Naunyn-Schmiedeberg's Arch. Pharmacol. 310, 113–119 (1979).

    Article  CAS  Google Scholar 

  26. De Young, M. B., Giannattasio, B. & Scarpa, A. Meth. Enzym. 173, 662–676 (1989).

    Article  CAS  Google Scholar 

  27. Bradford, M. M. Biochemistry 72, 248–254 (1976).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romani, A., Scarpa, A. Hormonal control of Mg2+ transport in the heart. Nature 346, 841–844 (1990). https://doi.org/10.1038/346841a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346841a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing