Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Alteration of mouse cytochrome P450coh substrate specificity by mutation of a single amino-acid residue

Abstract

AS a family of structurally-related enzymes, cytochrome P450 (P450) monooxygenases exhibit paradoxical characteristics: although collectively the enzymes display a broad range of substrate specificities, individually they are characterized by a high degree of substrate and product selectivity. Mouse P45015α, and P450coh, for example, which are expressed in female liver and male kidney cells1,2, catalyse 15α-hydroxylation of Δ4 3-ketone steroids, such as testosterone and 7-hydroxylation of coumarin, respectively3–6. In spite of their divergent catalytic activities, however, these enzymes differ by only 11 amino acids within their 494 residues5. To determine the structural basis of the different substrate specificities of P45015α and P450coh we therefore altered each of these 11 residues by site-directed mutagenesis, expressing the mutant cytochromes in COS-1 cells. We report that the activities of both cytochromes depend critically on the identities of the amino acids at positions 117, 209 and 365 and, moreover, that a single mutation in which Phe 209 is substituted by Leu is sufficient to convert the specificity of P450coh from coumarin to steroid hydroxylation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Burkhart, B. A., Harada, N. & Negishi, M. J. biol. Chem. 260, 15357–15361 (1985).

    CAS  PubMed  Google Scholar 

  2. Squires, E. J. & Negishi, M. Biochemistry 25, 4913–4918 (1986).

    Article  CAS  Google Scholar 

  3. Squires, E. J. & Negishi, M. J. biol. Chem. 263, 4166–4171 (1988).

    CAS  PubMed  Google Scholar 

  4. Harada, N. & Negishi, M. Biochem. Pharm. 37, 4778–4780 (1988).

    Article  CAS  Google Scholar 

  5. Lindberg, R., Burkhart, B., Ichikawa, T. & Negishi, M. J. biol. Chem. 264, 6465–6471 (1989).

    CAS  PubMed  Google Scholar 

  6. Negishi, M. et al. Biochemistry 28, 4169–4172 (1989).

    Article  CAS  Google Scholar 

  7. Poulos, T. L., Finzel, B. C., Gunsalus, L. C., Wagner, G. C. & Krant, J. J. biol. Chem. 260, 16122–16128 (1985).

    CAS  Google Scholar 

  8. Poulos, T. L., Finzel, B. C. & Howard, A. J. J. molec. Biol. 195, 687–700 (1987).

    Article  CAS  Google Scholar 

  9. Imai, Y. & Nakamura, M. FEBS Lett. 234, 313–315 (1988).

    Article  CAS  Google Scholar 

  10. Ishida, N. et al. Biochem. biophys. Res. Commun. 155, 317–323 (1988).

    Article  CAS  Google Scholar 

  11. Atkins, W. M. & Sligar, S. G. J. biol. Chem. 263, 18842–18849 (1988).

    CAS  PubMed  Google Scholar 

  12. Atkins, W. M. & Sligar, S. G. J. Am. chem. Soc. 111, 2715–2717 (1989).

    Article  CAS  Google Scholar 

  13. Sanger, F., Coulson, A. R., Barrel, B. G., Smith, A. J. H. & Roe, B. A. J. molec. Biol. 259, 1239–1250 (1980).

    Google Scholar 

  14. Soyampayac, L. M. & Donna, K. J. Proc. natn. Acad. Sci. U.S.A. 78, 7575–7578 (1981).

    Article  ADS  Google Scholar 

  15. Luthman, H. & Magnnson, G. Nucleic Acids Res. 11, 1295–1308 (1983).

    Article  CAS  Google Scholar 

  16. Harada, N. & Negishi, M. J. biol. Chem. 259, 12285–12290 (1984).

    CAS  PubMed  Google Scholar 

  17. Kaipainen, P., Koivusaari, V. & Lang, M. Comp. Biochem. Physiol. 81C, 293–296 (1985).

    CAS  Google Scholar 

  18. Ozols, J. & Johnson, E. F. J. biol. Chem. 256, 11405–11408 (1981).

    CAS  PubMed  Google Scholar 

  19. Fujii-Kuriyama, Y., Mizukami, Y., Kawajiri, K., Sogawa, K. & Muramatsu, M. Proc. natn. Acad. Sci. U.S.A. 79, 2793–2797 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindberg, R., Negishi, M. Alteration of mouse cytochrome P450coh substrate specificity by mutation of a single amino-acid residue. Nature 339, 632–634 (1989). https://doi.org/10.1038/339632a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/339632a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing