Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role for carbohydrate structures inTGF-β1 latency

Abstract

TRANSFORMING growth factor-β (TGF-β) (reviewed in refs 1–3) is a family of molecules that are made up as disulphide-bonded dimers of at least three different types of homologous polypeptides4–8. The active molecules are cleaved from the C termini of precursors4,6–8. TGF-β1, like other forms of TGF-β, is synthesized and secreted in a latent high relative molecular mass form (L-TGF-β1) from which active TGF-β1 can be released by transient and probably unphysiological acidification9–12. The latent complex from human platelets contains one dimeric TGF-β1 molecule, which is noncovalently associated with a disulphide-bonded complex of one dimeric remnant of the precursor and a single molecule of the so-called TGF-β1 binding protein (TGF-01-BP)11,13. We report here that enzymatic removal in vitro of the carbohydrate structures in the remnant of the TGF-β1 precursor produces biologically active TGF-β1 from the latent complex, suggesting that carbohydrate structures are of importance in rendering TGF-β1 inactive in the complex in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sporn, M. B., Roberts, A. B., Wakefield, L. M. & de Crombrugghe, B. J. Cell Biol. 105, 1039–1045 (1987).

    Article  CAS  Google Scholar 

  2. Moses, H. L. et al. in Growth Factors and Transformation, Cancer Cells 3 (eds Feramisco, J., Ozanne, B. & Stiles, C.) 65–71 (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1985).

    Google Scholar 

  3. Massagué, J. Cell 48, 437–438 (1987).

    Article  Google Scholar 

  4. Derynck, R. et al. Nature 316, 701–705 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Cheifez, S. et al. Cell 48, 409–415 (1987).

    Article  Google Scholar 

  6. de Martin, R. et al. EMBO J. 6, 3673–3677 (1987).

    Article  CAS  Google Scholar 

  7. ten Dijke, P., Hansen, P., Iwata, K. K., Pieler, C. & Foulkes, J. G. Proc. natn. Acad. Sci. U.S.A. 85, 4715–4719 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Derynck, R. et al. EMBO J. 7, 3737–3743 (1988).

    Article  CAS  Google Scholar 

  9. Pircher, R., Lawrence, D. A. & Jullien, P. Cancer Res. 44, 5538–5543 (1984).

    CAS  PubMed  Google Scholar 

  10. Pircher, R., Jullien, P. & Lawrence, D. A. Biochem. biophys. Res. Commun. 136, 30–37 (1986).

    Article  CAS  Google Scholar 

  11. Miyazono, K., Hellman, U., Wernstedt, C. & Heldin, C.-H. J. biol Chem. 263, 6407–6415 (1988).

    CAS  PubMed  Google Scholar 

  12. Lyons, R. M., Keski-Oja, J. & Moses, H. L. J. Cell Biol. 106, 1659–1665 (1988).

    Article  CAS  Google Scholar 

  13. Wakefield, L. M., Smith, D. M., Flanders, K. C. & Sporn, M. B. J. biol. Chem. 263, 7646–7654 (1988).

    CAS  PubMed  Google Scholar 

  14. Massagué, J. Meth. Enzym. 146, 174–195 (1987).

    Article  Google Scholar 

  15. Massagué, J. & Like, B. J. biol. Chem. 260, 2636–2645 (1985).

    PubMed  Google Scholar 

  16. Brunner, A. M., Gentry, L. E., Cooper, J. A. & Purchio, A. F. Molec. cell. Biol. 8, 2229–2232 (1988).

    Article  CAS  Google Scholar 

  17. Elder, J. H. & Alexander, S. Proc. natn. Acad. Sci. U.S.A. 79, 4540–4544 (1982).

    Article  ADS  CAS  Google Scholar 

  18. Thotakura, N. R. & Bahl, O. P. Meth. Enzym. 138, 350–359 (1987).

    Article  CAS  Google Scholar 

  19. Purchio, A. F. et al. J. biol. Chem. 263, 14211–14215 (1988).

    CAS  PubMed  Google Scholar 

  20. Hasilik, A. & Neufeld, E. F. J. biol. Chem. 255, 4946–4950 (1980).

    CAS  PubMed  Google Scholar 

  21. Tabas, I. & Kornfeld, S. J. biol. Chem. 255, 6633–6639 (1980).

    CAS  PubMed  Google Scholar 

  22. Shauer, R. Adv. Carbohyd. Chem. 40, 131–234 (1982).

    Google Scholar 

  23. Pilatte, Y., Bignon, J. & Lambré, C. R. Biochim. biophys. Acta 923, 150–155 (1987).

    Article  CAS  Google Scholar 

  24. Morgan, D. O. et al. Nature 329, 301–307 (1987).

    Article  ADS  CAS  Google Scholar 

  25. Frolik, C. A., Wakefield, L. M., Smith, D. M. & Sporn, M. B. J. biol. Chem. 259, 10995–11000 (1984).

    CAS  PubMed  Google Scholar 

  26. Blobel, G. & Dobberstein, B. J. Cell Biol. 67, 835–851 (1975).

    Article  CAS  Google Scholar 

  27. Morrissey, J. H. Analyt Biochem. 117, 307–310 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyazono, K., Heldin, CH. Role for carbohydrate structures inTGF-β1 latency. Nature 338, 158–160 (1989). https://doi.org/10.1038/338158a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/338158a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing