Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Post-transcriptional control of myc and p53 expression during differentiation of the embryonal carcinoma cell line F9

Abstract

Teratocarcinoma cells provide us with a model system for the study of differentiation and development1–3. One of the best characterized cell lines, the embryonal carcinoma stem cell line F9, differentiates after treatment with retinoic acid (RA) and dibutyryl cyclic AMP into parietal endoderm4. This differentiation process is accompanied by the induction of several genes, for example, those encoding collagen IV, plasminogen activator and intermediate filaments like laminin4–6. In contrast, a marked reduction of stable messenger RNA has been observed for the gene encoding p53 and for c-myc7,8. Both cellular oncogenes seem to be involved in the regulation of cellular proliferation and neoplastic transformation8–12. For growth-arrested 3T3 fibroblasts, growth-factor-induced changes of myc RNA are controlled at the level of transcription13. In contrast, F9 cells provide a differentiation system in which cells are able to change from a tumorigenic state into non-dividing, non-tumorigenic endodermal cells5. The latter process enabled us to study the regulation of myc and p53 genes in the same cells at different stages of growth, tumorigenicity and differentiation. Here we report that down-regulation of stable myc and p53 RNA during irreversible differentiation of F9 cells occurs at the post-transcriptional level. Using an in vitro nuclear transcription assay14, we found that the polymerase II density on both genes remains constant during differentiation. In agreement with this interpretation, we detected myc RNA as stable transcripts in differentiated F9 cells after treatment of the cells with cyclo-heximide. The post-transcriptional regulatory mechanisms controlling p53 and myc stability follow different kinetics. Whereas the down-regulation of myc seems to be an early event of F9 differentiation occurring within the first 24 h, the post-transcriptional regulation of p53 occurs at a later stage (two to three days), possibly as a consequence of cell cycle changes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Martin, G. R. Science 209, 768–776 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Martin, G. R. Cell 5, 229–243 (1975).

    Article  CAS  Google Scholar 

  3. Bernstine, E. G., Hooper, M. L., Grandchamp, S. & Ephrussi, B. Proc. natn. Acad. Sci. U.S.A. 70, 3899–3903 (1973).

    Article  ADS  CAS  Google Scholar 

  4. Strickland, S. & Mahdavi, V. Cell 15, 393–403 (1978).

    Article  CAS  Google Scholar 

  5. Strickland, S., Smith, K. K. & Marotti, K. R. Cell 21, 347–355 (1980).

    Article  CAS  Google Scholar 

  6. Kurkinen, M., Barlow, D. P., Helfman, D. M., Williams, J. G. & Hogan, B. L. M. Nucleic Acids Res. 11, 6199–6209 (1983).

    Article  CAS  Google Scholar 

  7. Reich, N. C., Oren, M. & Levine, A. J. Molec. cell. Biol. 3, 2143–2150 (1983).

    Article  CAS  Google Scholar 

  8. Campisi, J., Gray, H. E., Pardee, A. B., Dean, M. & Sonenshein, G. E. Cell 36, 241–247 (1984).

    Article  CAS  Google Scholar 

  9. Milner, J. & Milner, S. Virology 112, (1981).

    Article  CAS  Google Scholar 

  10. Mercer, W. E., Nelson, D., De Leo, A. B., Old, L. J. & Baserga, R. Proc. natn. Acad. Sci. U.S.A. 79, 6309–6312 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Eliyahu, D., Raz, A., Gruss, P., Givol, D. & Oren, M. Nature 312, 646–649 (1984),

    Article  ADS  CAS  Google Scholar 

  12. Kelly, K., Cochran, B. H., Stiles, C. D. & Leder, P. Cell 35, 603–610 (1983).

    Article  CAS  Google Scholar 

  13. Greenberg, M. E. & Ziff, E. B. Nature 311, 433–438 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Groudine, M., Peretz, M. & Weintraub, H. Molec. cell. Biol. 1, 281–288 (1981).

    Article  CAS  Google Scholar 

  15. McKnight, G. S. & Palmiter, R. J. biol. Chem. 254, 9050–9058 (1979).

    CAS  Google Scholar 

  16. Marzluff, W. F. Meth. cell Biol. 19, 317–331 (1978).

    Article  Google Scholar 

  17. Wang, S. Y., La Rosa, G. J. & Gudas, L. J. Devl. Biol. 107, 75–86 (1985).

    Article  CAS  Google Scholar 

  18. Mackall, J., Meredith, M. & Lane, D. Analyt. Biochem. 95, 270–275 (1979).

    Article  CAS  Google Scholar 

  19. Dani, Ch. et al. Proc. natn. Acad. Sci. U.S.A. 81, 7046–7050 (1984).

    Article  ADS  CAS  Google Scholar 

  20. Reitsma, P. H. et al. Nature 306, 492–494 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Jonak, G. J. & Knight, E. Jr Proc. natn. Acad. Sci. U.S.A. 81, 1747–1750 (1984).

    Article  ADS  CAS  Google Scholar 

  22. Einat, M., Resnitzky, D. & Kimchi, A. Nature 313, 597–600 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Knight, E. Jr, Anton, E. D., Fahey, D., Friedland, B. K. & Jonak, G. J. Proc. natn. Acad Sci. U.S.A. 82, 1151–1154 (1985).

    Article  ADS  CAS  Google Scholar 

  24. Howe, C. C., Lugg, D. K. & Overton, G. C. Molec. cell. Biol. 4, 2428–2436 (1984).

    Article  CAS  Google Scholar 

  25. Rosenstaus, M. J., Sundell, C. L. & Liskay, M. R. Devl. Biol. 89, 516–520 (1982).

    Article  Google Scholar 

  26. Carneiro, M. & Schibler, U. J. molec. Biol. 178, 869–880 (1984).

    Article  CAS  Google Scholar 

  27. Hewish, D. R. & Burgoyne, L. A. Biochem. biophys. Res. Commun. 52, 504–510 (1973).

    Article  CAS  Google Scholar 

  28. Schibler, U., Hagenbüchle, O., Wellauer, P. & Pittett, A. C. Cell 33, 501–508 (1983).

    Article  CAS  Google Scholar 

  29. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning: A Laboratory Manual, 331 (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  30. Kafatos, F. C., Jones, C. W. & Efstratiadis, A. Nucleic Acids Res. 7, 1541–1552 (1979).

    Article  CAS  Google Scholar 

  31. Zakut-Houri, R. et al. Nature 306, 594–597 (1983).

    Article  ADS  CAS  Google Scholar 

  32. Stanton, L. W., Watt, R. & Marcu, K. B. Nature 303, 401–406 (1983).

    Article  ADS  CAS  Google Scholar 

  33. Marotti, K. R., Brown, G. D. & Strickland, S. Devl Biol. 108, 26–31 (1985).

    Article  CAS  Google Scholar 

  34. Belayew, A. & Tilghman, S. M. Molec. cell. Biol. 2, 1427–1435 (1982).

    Article  CAS  Google Scholar 

  35. Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J. & Rutter, W. J. Biochemistry 18, 5294–5295 (1979).

    Article  CAS  Google Scholar 

  36. Dani, Ch. et al. Proc. natn. Acad. Sci. 82 (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dony, C., Kessel, M. & Gruss, P. Post-transcriptional control of myc and p53 expression during differentiation of the embryonal carcinoma cell line F9. Nature 317, 636–639 (1985). https://doi.org/10.1038/317636a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/317636a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing