Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The long internal loop of the α3 subunit targets nAChRs to subdomains within individual synapses on neurons in vivo

Abstract

Different types of neurotransmitter receptors coexist within single neurons and must be targeted to discrete synaptic regions for proper function. In chick ciliary ganglion neurons, nicotinic acetylcholine receptors (nAChRs) containing α3 and α5 subunits are concentrated in the postsynaptic membrane, whereas α-bungarotoxin receptors composed of α7 subunits are localized perisynaptically and excluded from the synapse. Using retroviral vector-mediated gene transfer in vivo, we show that the long cytoplasmic loop of α3 targets chimeric α7 subunits to the synapse and reduces endogenous nAChR surface levels, whereas the α5 loop does neither. These results show that a particular domain of one subunit targets specific receptor subtypes to the interneuronal synapse in vivo. Moreover, our findings suggest a difference in the mechanisms that govern assembly of interneuronal synapses as compared to the neuromuscular junction in vertebrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Retroviral vector-mediated transfer of exogenous genes into CG neurons during synapse formation in vivo.
Figure 2: Electron micrographs demonstrating the distribution of overexpressed chimeric and wild-type α7 subunits in relation to synaptic and perisynaptic regions on CG neurons.
Figure 3: Schematic representation of the ultrastructural localization of endogenous nAChRs Bgt-nAChRs and chimeric subunits in synaptic and perisynaptic regions of ciliary ganglion neurons in vivo.
Figure 4: Surface levels of exogenous myc-tagged subunits and endogenous nAChRs on CG neurons.
Figure 5: Functional properties and surface levels of myc-tagged chimeric and wild-type α7 subunits expressed in Xenopus oocytes.

Similar content being viewed by others

References

  1. Dani, J. A. & Heinemann, S. Molecular and cellular aspects of nicotine abuse. Neuron 16, 905– 908 (1996).

    Article  CAS  Google Scholar 

  2. Picciotto, M .R. et al. Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature 391, 173–177 ( 1998).

    Article  CAS  Google Scholar 

  3. Lena, C. & Changeux, J. P. Pathological mutations of nicotinic receptors and nicotine-based therapies for brain disorders. Curr. Opin. Neurobiol. 7, 674–682 (1997).

    Article  CAS  Google Scholar 

  4. Vernallis, A. B., Conroy, W. G. & Berg, D. K. Neurons assemble acetylcholine receptors with as many as three kinds of subunits while maintaining subunit segregation among receptor subtypes. Neuron 10, 451– 464 (1993).

    Article  CAS  Google Scholar 

  5. Conroy, W. G. & Berg, D. K. Neurons can maintain multiple classes of nicotinic acetylcholine receptors distinguished by different subunit compositions. J. Biol. Chem. 270, 4424– 4431 (1995).

    Article  CAS  Google Scholar 

  6. McGehee, D. S. & Role, L. W. Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annu. Rev. Physiol. 57, 521–546 (1995).

    Article  CAS  Google Scholar 

  7. Lindstrom, J. et al. Structure and function of neuronal nicotinic acetylcholine receptors. Prog. Brain Res. 109, 125– 137 (1996).

    Article  CAS  Google Scholar 

  8. Couturier, S. et al. A neuronal nicotinic acetylcholine receptor subunit (alpha 7) is developmentally regulated and forms a homo-oligomeric channel blocked by alpha-BTX. Neuron 5, 847– 856 (1990).

    Article  CAS  Google Scholar 

  9. Homburger, S. A. & Fekete, D. M. High efficiency gene transfer into the embryonic chicken CNS using B-subgroup retroviruses. Dev. Dyn. 206, 112–120 (1996).

    Article  CAS  Google Scholar 

  10. Morgan, B. A. & Fekete, D. M. Manipulating gene expression with replication-competent retroviruses. Methods Cell Biol. 51, 185–218 (1996).

    Article  CAS  Google Scholar 

  11. Federspiel, M. J. & Hughes, S. H. Retroviral gene delivery. Methods Cell Biol. 52, 179– 214 (1998).

    Article  Google Scholar 

  12. Vicente-Agullo, F. et al. Acetylcholine receptor subunit homomer formation requires compatibility between amino acid residues of the M1 and M2 transmembrane segments. FEBS Lett. 399, 83–86 (1996).

    Article  CAS  Google Scholar 

  13. Eisele, J. L. et al. Chimaeric nicotinic-serotonergic receptor combines distinct ligand binding and channel specificities. Nature 366 , 479–483 (1993).

    Article  CAS  Google Scholar 

  14. Barald, K. F. Culture conditions affect the cholinergic development of an isolated subpopulation of chick mesencephalic neural crest cells. Dev. Biol. 135, 349–366 (1989).

    Article  CAS  Google Scholar 

  15. Jacob, M. H. & Berg, D. K. The ultrastructural localization of alpha-bungarotoxin binding sites in relation to synapses on chick ciliary ganglion neurons. J. Neurosci. 3, 260– 271 (1983).

    Article  CAS  Google Scholar 

  16. Jacob, M. H., Lindstrom, J. M. & Berg, D. K. Surface and intracellular distribution of a putative neuronal nicotinic acetylcholine receptor. J. Cell Biol. 103, 205–214 (1986).

    Article  CAS  Google Scholar 

  17. Loring, R. H., Dahm, L. M. & Zigmond, R. E. Localization of alpha-bungarotoxin binding sites in the ciliary ganglion of the embryonic chick: an autoradiographic study at the light and electron microscopic level. Neuroscience 14, 645–660 (1985).

    Article  CAS  Google Scholar 

  18. Loring, R. H. & Zigmond, R. E. Ultrastructural distribution of 125I-toxin F binding sites on chick ciliary neurons: synaptic localization of a toxin that blocks ganglionic nicotinic receptors. J. Neurosci. 7, 2153–2162 (1987).

    Article  CAS  Google Scholar 

  19. Role, L. W., Matossian, V. R., O'Brien, R. J. & Fischbach, G. D. On the mechanism of acetylcholine receptor accumulation at newly formed synapses on chick myotubes. J. Neurosci. 5, 2197– 2204 (1985).

    Article  CAS  Google Scholar 

  20. Salpeter, M. M. et al. Degradation of acetylcholine receptors at vertebrate neuromuscular junctions. Ann. NY Acad. Sci. 681, 155–164 (1993).

    Article  CAS  Google Scholar 

  21. Levey, M. S. & Jacob, M. H. Changes in the regulatory effects of cell-cell interactions on neuronal AChR subunit transcript levels after synapse formation. J. Neurosci. 16, 6878 –6885 (1996).

    Article  CAS  Google Scholar 

  22. Jacob, M. H. Acetylcholine receptor expression in developing chick ciliary ganglion neurons. J. Neurosci. 11, 1701– 1712 (1991).

    Article  CAS  Google Scholar 

  23. Mandelzys, A., Pie, B., Deneris, E. S. & Cooper, E. The developmental increase in ACh current densities on rat sympathetic neurons correlates with changes in nicotinic ACh receptor alpha-subunit gene expression and occurs independent of innervation. J. Neurosci. 14, 2357–2364 (1994).

    Article  CAS  Google Scholar 

  24. Levey, M. S., Brumwell, C. L., Dryer, S. E. & Jacob, M. H. Innervation and target tissue interactions differentially regulate acetylcholine receptor subunit mRNA levels in developing neurons in situ. Neuron 14, 153–162 ( 1995).

    Article  CAS  Google Scholar 

  25. Listerud, M., Brussaard, A. B., Devay, P., Colman, D. R. & Role, L. W. Functional contribution of neuronal AChR subunits revealed by antisense oligonucleotides. Science 254, 1518–1521 (1991).

    Article  CAS  Google Scholar 

  26. Ramirez-Latorre, J. et al. Functional contributions of alpha5 subunit to neuronal acetylcholine receptor channels. Nature 380, 347–351 (1996).

    Article  CAS  Google Scholar 

  27. Wang, F. et al. Assembly of human neuronal nicotinic receptor alpha5 subunits with alpha3, beta2, and beta4 subunits. J. Biol. Chem. 271, 17656–17665 (1996).

    Article  CAS  Google Scholar 

  28. Margiotta, J. F. & Gurantz, D. Changes in the number, function, and regulation of nicotinic acetylcholine receptors during neuronal development. Dev. Biol. 135, 326 –339 (1989).

    Article  CAS  Google Scholar 

  29. Horch, H. L. & Sargent, P. B. Perisynaptic surface distribution of multiple classes of nicotinic acetylcholine receptors on neurons in the chicken ciliary ganglion. J. Neurosci. 15, 7778–7795 (1995).

    Article  CAS  Google Scholar 

  30. Moss, B. L. & Role, L. W. Enhanced ACh sensitivity is accompanied by changes in ACh receptor channel properties and segregation of ACh receptor subtypes on sympathetic neurons during innervation in vivo. J. Neurosci. 13, 13–28 ( 1993).

    Article  CAS  Google Scholar 

  31. Zhang, Z. W., Coggan, J. S. & Berg, D. K. Synaptic currents generated by neuronal acetylcholine receptors sensitive to alpha-bungarotoxin. Neuron 17 , 1231–1240 (1996).

    Article  CAS  Google Scholar 

  32. Ullian, E. M., McIntosh, J. M. & Sargent, P. B. Rapid synaptic transmission in the avian ciliary ganglion is mediated by two distinct classes of nicotinic receptors. J. Neurosci. 17, 7210–7219 (1997).

    Article  CAS  Google Scholar 

  33. Rathouz, M. M., Vijayaraghavan, S. & Berg, D. K. Acetylcholine differentially affects intracellular calcium via nicotinic and muscarinic receptors on the same population of neurons. J. Biol. Chem. 270, 14366– 14375 (1995).

    Article  CAS  Google Scholar 

  34. Vijayaraghavan, S., Huang, B., Blumenthal, E. M. & Berg, D. K. Arachidonic acid as a possible negative feedback inhibitor of nicotinic acetylcholine receptors on neurons. J. Neurosci. 15, 3679 –3687 (1995).

    Article  CAS  Google Scholar 

  35. Maimone, M. M. & Merlie, J. P. Interaction of the 43 kd postsynaptic protein with all subunits of the muscle nicotinic acetylcholine receptor. Neuron 11, 53– 66 (1993).

    Article  CAS  Google Scholar 

  36. Yu, X. M. & Hall, Z. W. The role of the cytoplasmic domains of individual subunits of the acetylcholine receptor in 43 kDa protein-induced clustering in COS cells. J. Neurosci. 14, 785–795 (1994).

    Article  CAS  Google Scholar 

  37. Apel, E. D., Glass, D. J., Moscoso, L. M., Yancopoulos, G. D. & Sanes, J. R. Rapsyn is required for MuSK signaling and recruits synaptic components to a MuSK-containing scaffold. Neuron 18, 623–635 (1997).

    Article  CAS  Google Scholar 

  38. Kornau, H. C., Seeburg, P. H. & Kennedy, M. B. Interaction of ion channels and receptors with PDZ domain proteins. Curr. Opin. Neurobiol. 7, 368–373 (1997).

    Article  CAS  Google Scholar 

  39. Sheng, M. & Wyszynski, M. Ion channel targeting in neurons. Bioessays 19, 847–853 (1997).

    Article  CAS  Google Scholar 

  40. Kirsch, J., Wolters, I., Triller, A. & Betz, H. Gephyrin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons. Nature 366, 745–748 ( 1993).

    Article  CAS  Google Scholar 

  41. Squinto, S.P. et al. Identification of functional receptors for ciliary neurotrophic factor on neuronal cell lines and primary neurons. Neuron 5, 757–766 (1990).

    Article  CAS  Google Scholar 

  42. Palma, E., Bertrand, S., Binzoni, T. & Bertrand, D. Neuronal nicotinic alpha 7 receptor expressed in Xenopus oocytes presents five putative binding sites for methyllycaconitine. J. Physiol. (Lond.) 491, 151–161 ( 1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is dedicated to Annette Altman. We acknowledge Donna Fekete and members of her lab for providing retroviral vector reagents, advice and assistance, Marc Ballivet for providing nAChR subunit clones and discussions, Josee Huard and Brian Moquin for their participation in early stages of these experiments, and Kathleen Dunlap, F.Rob Jackson and Stephen Lambert for comments on the manuscript. This work was supported by the Swiss National Science Foundation and OFES to D.B and NIH grant 21725 to M.H.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele H. Jacob.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, B., Temburni, M., Levey, M. et al. The long internal loop of the α3 subunit targets nAChRs to subdomains within individual synapses on neurons in vivo . Nat Neurosci 1, 557–562 (1998). https://doi.org/10.1038/2792

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/2792

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing