Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reduced antinociception in mice lacking neuronal nicotinic receptor subunits

Abstract

Nicotine exerts antinociceptive effects by interacting with one or more of the subtypes of nicotinic acetylcholine receptors (nAChRs) that are present throughout the neuronal pathways that respond to pain1,2,3,4,5. To identify the particular subunits involved in this process, we generated mice lacking the α4 subunit of the neuronal nAChR by homologous recombination techniques and studied these together with previously generated mutant mice lacking the β2 nAChR subunit6. Here we show that the homozygous α4−/− mice no longer express high-affinity [3H]nicotine and [3H]epibatidine binding sites throughout the brain. In addition, both types of mutant mice display a reduced antinociceptive effect of nicotine on the hot-plate test and diminished sensitivity to nicotine in the tail-flick test. Patch-clamp recordings further reveal that raphe magnus and thalamic neurons no longer respond to nicotine. The α4 nAChR subunit, possibly associated with the β2 nAChR subunit, is therefore crucial for nicotine-elicited antinociception.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted mutagenesis and expression analysis of the α4 nAChR subunit.
Figure 2: Expression of neuronal nAChRs in mouse brain.
Figure 3: Antinociception of α4-knockout mice in the hot-plate and tail-flick assays.
Figure 4: Patch-clamp recordings of nicotine-evoked currents in raphe magnus, thalamus and dorsal horn of the spinal cord of α4+/+, α4−/− and β2−/− mice.

Similar content being viewed by others

References

  1. Iwamoto, E. T. Characterization of the antinociception induced by nicotine in the pedunculopontine tegmental nucleus and the nucleus raphe magnus. J. Pharmacol. Exp. Ther. 257, 120–133 (1991).

    CAS  PubMed  Google Scholar 

  2. Bannon, A. W.et al. Broad-spectrum, non-opioid analgesic activity by selective modulation of neuronal nicotinic acetylcholine receptors. Science 279, 77–81 (1998).

    Article  ADS  CAS  Google Scholar 

  3. Spande, T. F. et al. Epibatidine: a novel (chloropyridyl)azabicycloheptaine with potent analgesic activity from an Ecuadoran poison frog. J. Am. Chem. Soc. 114, 3475–3478 (1992).

    Article  CAS  Google Scholar 

  4. Wada, E. et al. Distribution of α2, α3, α4, and β2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. J. Comp. Neurol. 284, 314–335 (1989).

    Article  CAS  Google Scholar 

  5. Le Novère, N., Zoli, M. & Changeux, J. P. Neuronal nicotinic receptor α6 subunit mRNA is selectively concentrated in catecholaminergic nuclei of the rat brain. Eur. Neurosci. 8, 2428–2439 (1996).

    Article  Google Scholar 

  6. Picciotto, M. et al. Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature 374, 65–67 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Zoli, M., Léna, C., Picciotto, M. R. & Changeux, J. P. Identification of four classes of brain nicotinic receptors using β-2 mutant mice. J. Neurosci. 18, 4461–4472 (1998).

    Article  CAS  Google Scholar 

  8. Ramirez-Latorre, J. et al. Functional contributions of α5 subunit to neuronal acetylcholine receptor channels. Nature 380, 347–351 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Le Novère, N. & Changeux, J. P. Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells. J. Mol. Evol. 40, 155–172 (1995).

    Article  ADS  Google Scholar 

  10. Clarke, P. B. S., Schwartz, R. D., Paul, S. M., Pert, C. B. & Pert, A. Nicotinic binding in rat brain: autoradiographic comparison of 3H-acetylcholine, 3H-nicotine, and 125I-α-bungarotoxin. J. Neurosci. 5, 1307–1315 (1985).

    Article  CAS  Google Scholar 

  11. D'Amour, F. E. & Smith, D. L. Amethod for determining loss of pain sensation. J. Pharmacol. Exp. Ther. 72, 74–79 (1941).

    Google Scholar 

  12. Caggiula, A. R., Epstein, L. H., Perkins, K. A. & Saylor, S. Different methods of assessing nicotine-induced antinociception may engage different neural mechanisms. Physchopharmacology 122, 301–306 (1995).

    Article  CAS  Google Scholar 

  13. Tripathi, H. L., Martin, B. R. & Aceto, M. D. Nicotine-induced antinociception in rats and mice: correlation with nicotine brain levels. J. Pharmacol. Exp. Ther. 221, 91–96 (1982).

    CAS  PubMed  Google Scholar 

  14. Sahley, T. L. & Bernston, G. G. Antinociceptive effects of central and systemic administration of nicotine in the rat. Psychopharmacology 65, 279–283 (1979).

    Article  CAS  Google Scholar 

  15. Jurna, I., Krauss, P. & Baldauf, J. Depression by nicotine of pain-related nociceptive activity in the rat thalamus and spinal cord. Clin. Pharmacol. 72, 65–73 (1993).

    Google Scholar 

  16. Bitner, R. S. et al. Role of the nucleus raphe magnus in antinociception produced by ABT-594: immediate early gene responses possibly linked to neuronal nicotinic acetylcholine receptors on serotonergic neurons. J. Neurosci. 18, 5426–5432 (1998).

    Article  CAS  Google Scholar 

  17. Pan, Z. Z., Wessendorf, M. W. & Williams, J. T. Modulation by serotonin of the neurons in the rat nucleus raphe magnus in vitro. Neuroscience 54, 421–429 (1993).

    Article  CAS  Google Scholar 

  18. Asghar, K. & Roth, L. J. Entry and distribution of hexamethonium in the central nervous system. Biochem. Pharmacol. 20, 2787–2795 (1971).

    Article  CAS  Google Scholar 

  19. Rao, T. S., Correa, L. D., Reid, R. T. & Lloyd, G. K. Evaluation of anti-nociceptive effects of neuronal nicotinic acetylcholine receptor (NAChR) ligands in the rat tail-flick assay. Neuropharmacology 35, 393–405 (1996).

    Article  CAS  Google Scholar 

  20. Flores, C. M., DeCamp, R. M., Kilo, S., Rogers, S. W. & Hargreaves, K. M. Neuronal nicotinic receptor expression in sensory neurons of the rat trigeminal ganglion: demonstration of α3β4, a novel subtype in the mammalian nervous system. J. Neurosci. 16, 7892–7901 (1996).

    Article  CAS  Google Scholar 

  21. Damaj, M., Patrick, G., Creasy, K. & Martin, B. Pharmacology of lobeline, a nicotinic receptor ligand. J. Pharmacol. Toxicol. 282, 410–419 (1997). (AUTHOR: journal title OK?)

    CAS  Google Scholar 

  22. Picciotto, M. R. et al. Acetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotine. Nature 391, 173–177 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Tallarida, R. & Murray, R. Manual of Pharmacological Calculations with Computer Programs(Springer, New York, (1987).

    Google Scholar 

  24. Zimmerman, M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16, 109 (1983).

    Article  Google Scholar 

  25. Léna, C. & Changeux, J. P. Role of Ca2+ ions in nicotinic facilitation of GABA release in mouse thalamus. J. Neurosci. 17, 576–585 (1997).

    Article  Google Scholar 

  26. Yagi, T. et al. Anovel negative selection for homologous recombinants using diphtheria toxin A fragment gene. Anal. Biochem. 214, 77–86 (1993).

    Article  CAS  Google Scholar 

  27. Franklin, K. B. J. & Paxinos, G. The Mouse Brain in Stereotaxic Coordinates(Academic, San Diego, (1997).

    Google Scholar 

Download references

Acknowledgements

The authors thank S. Brown and M. Picciotto for their contribution to this project; M.Zoli for scientific discussions; N. Bordes for help with experiments; and P. Parra, S. Edelstein and R.Klink for critical reading of the manuscript. This research was supported by grants from the Collège de France, the Association Francaise contre les Myopathies, Reynolds Pharm., EEC Biotech and Biomed Programs, the Council for Tobacco Research, the National Alliance for Research on Schizophrenia and Depression, and NIH (for M.I.D.).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marubio, L., Arroyo-Jimenez, M., Cordero-Erausquin, M. et al. Reduced antinociception in mice lacking neuronal nicotinic receptor subunits. Nature 398, 805–810 (1999). https://doi.org/10.1038/19756

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/19756

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing