Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activity-dependent changes in partial VAMP complexes during neurotransmitter release

Abstract

The temporal sequence of SNARE protein interactions that cause exocytosis is unknown. Blockade of synaptic neurotransmitter release through cleavage of VAMP/synaptobrevin by tetanus toxin light chain (TeNT-LC) was accelerated by nerve stimulation. Botulinum/B neurotoxin light chain (BoNT/B-LC), which cleaves VAMP at the same site as TeNT-LC, did not require stimulation. Because TeNT-LC requires the N-terminal coil domain of VAMP for binding but BoNT/B-LC requires the C-terminal coil domain, it seems that, before nerve activity, the N-terminal domain is shielded in a protein complex, but the C-terminal domain is exposed. This N-terminal complex lasts until nerve activity occurrs and may serve to cock synaptic vesicles for immediate exocytosis upon Ca2+ entry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stimulation accelerates the inhibitory effect of TeNT-LC on EPSP amplitude.
Figure 2: Activity dependence of TeNT-LC.
Figure 3: Nerve activity is required for cleavage of VAMP by TeNT-LC but not by BoNT/B-LC.
Figure 4: VAMP structure and effect of BoNT/B.
Figure 5: Effect of TeNT-LC is blocked by hVAMP2/27-55.
Figure 6: The effect of BoNT/D-LC requires nerve activity.

Similar content being viewed by others

References

  1. Söllner, T., Bennett, M. K., Whiteheart, S. W., Scheller, R. H. & Rothman, J. E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75, 409–418 (1993).

    Article  Google Scholar 

  2. Weis, W. I. & Scheller, R. H. SNARE the rod, coil the complex. Nature 395, 328–329 (1998).

    Article  CAS  Google Scholar 

  3. Rizo, J. & Südhof, T. C. Mechanics of membrane fusion. Nat. Struct. Biol. 5, 839–842 (1998).

    Article  CAS  Google Scholar 

  4. Ryan, T. A. Probing a complex question: when are SNARE proteins ensnared? Nat. Neurosci. 1, 175–177 (1998).

    Article  CAS  Google Scholar 

  5. Hayashi, T. et al. Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J. 13, 5051–5061 (1994).

    Article  CAS  Google Scholar 

  6. Hua, S.-Y., Raciborska, D. A., Trimble, W. S. & Charlton, M. P. Different VAMP/synaptobrevin complexes for spontaneous and evoked transmitter release at the crayfish neuromuscular junction. J. Neurophysiol. 80, 3233–3247 (1998).

    Article  CAS  Google Scholar 

  7. Ferrer-Montiel, A. V., Canaves, J. M., DasGupta, B. R., Wilson, M. C. & Montal, M. Tyrosine phosphorylation modulates the activity of clostridial neurotoxins. J. Biol. Chem. 271, 18322–18325 (1996).

    Article  CAS  Google Scholar 

  8. Schiavo, G. et al. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359, 832–835 (1992).

    Article  CAS  Google Scholar 

  9. Cornille, F. et al. Cooperative exosite-dependent cleavage of synaptobrevin by tetanus toxin light chain. J. Biol. Chem. 272, 3459–3464 (1997).

    Article  CAS  Google Scholar 

  10. Pellizzari, R. et al. Structural determinants of the specificity for synaptic vesicle-associated membrane protein/synaptobrevin of tetanus and botulinum type B and G neurotoxins. J. Biol. Chem. 271, 20353–20358 (1996).

    Article  CAS  Google Scholar 

  11. Rossetto, O. et al. SNARE motif and neurotoxins. Nature 372, 415–416 (1994).

    Article  CAS  Google Scholar 

  12. Pellizzari, R., Mason, S., Shone, C. C. & Montecucco, C. The interaction of synaptic vesicle-associated membrane protein/synaptobrevin with botulinum neurotoxins D and F. FEBS Lett. 409, 339–342 (1997).

    Article  CAS  Google Scholar 

  13. Sheng, Z. H., Rettig, J., Cook, T. & Catterall, W. A. Calcium-dependent interaction of N-type calcium channels with the synaptic core complex. Nature 379, 451–454 (1996).

    Article  CAS  Google Scholar 

  14. Llinas, R., Steinberg, I. Z. & Walton, K. Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse. Biophys. J. 33, 323–351 (1981).

    Article  CAS  Google Scholar 

  15. Poirier, M. A. et al. The synaptic SNARE complex is a parallel four-stranded helical bundle. Nat. Struct. Biol. 5, 765–769 (1998).

    Article  CAS  Google Scholar 

  16. Sutton, R. B., Fasshauer, D., Jahn, R. & Brunger, A. T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395, 347–353 (1998).

    Article  CAS  Google Scholar 

  17. Chen, Y. A., Scales, S. J., Patel, S. M., Doung, Y.-C. & Scheller, R. H. SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Cell 97, 165–174 (1999).

    Article  CAS  Google Scholar 

  18. Hayashi, T., Yamasaki, S., Nauenburg, S., Binz, T. & Niemann, H. Disassembly of the reconstituted synaptic vesicle membrane fusion complex in vitro. EMBO J. 14, 2317–2325 (1995).

    Article  CAS  Google Scholar 

  19. Regazzi, R. et al. Mutational analysis of VAMP domains implicated in Ca2+-induced insulin exocytosis. EMBO J. 15, 6951–6959 (1996).

    Article  CAS  Google Scholar 

  20. Fiebig, K. M., Rice, L. M., Pollock, E. & Brunger, A. T. Folding intermediates of SNARE complex assembly. Nat. Struct. Biol. 6, 117–123 (1999).

    Article  CAS  Google Scholar 

  21. Calakos, N. & Scheller, R. H. Vesicle-associated membrane protein and synaptophysin are associated on the synaptic vesicle. J. Biol. Chem. 269, 24534–24537 (1994).

    CAS  Google Scholar 

  22. Washbourne, P., Schiavo, G. & Montecucco, C. Vesicle-associated membrane protein-2 (synaptobrevin-2) forms a complex with synaptophysin. Biochem. J. 305, 721–724 (1995).

    Article  CAS  Google Scholar 

  23. McMahon, H. T. et al. Synaptophysin, a major synaptic vesicle protein, is not essential for neurotransmitter release. Proc. Natl. Acad. Sci. USA 93, 4760–4764 (1996).

    Article  CAS  Google Scholar 

  24. Otto, H., Hanson, P. I. & Jahn, R. Assembly and disassembly of a ternary complex of synaptobrevin, syntaxin, and SNAP-25 in the membrane of synaptic vesicles. Proc. Natl. Acad. Sci. USA 94, 6197–6201 (1997).

    Article  CAS  Google Scholar 

  25. Xu, T., Binz, T., Niemann, H. & Neher, E. Multiple kinetic components of exocytosis distinguished by neurotoxin sensitivity. Nat. Neurosci. 1, 192–200 (1998).

    Article  CAS  Google Scholar 

  26. Edwards, R. H. Neurotransmitter release: variations on a theme. Curr. Biol. 8, R883–885 (1998).

    Article  CAS  Google Scholar 

  27. Morgan, A. & Burgoyne, R. D. Common mechanisms for regulated exocytosis in the chromaffin cell and the synapse. Semin. Cell Dev. Biol. 8, 141–149 (1997).

    Article  CAS  Google Scholar 

  28. Burgoyne, R. D., Geisow, M. J. & Barron, J. Dissection of stages in exocytosis in the adrenal chromaffin cell with use of trifluoperazine. Proc. R. Soc. Lond. B Biol. Sci. 216, 111–115 (1982).

    Article  CAS  Google Scholar 

  29. Kasai, H. Comparative biology of Ca2+-dependent exocytosis: implications of kinetic diversity for secretory function. Trends Neurosci. 22, 88–93 (1999).

    Article  CAS  Google Scholar 

  30. Schweizer, F. E. et al. Regulation of neurotransmitter release kinetics by NSF. Science 279, 1203–1206 (1998).

    Article  CAS  Google Scholar 

  31. Burke, R. E. & Rudomin, P. in Handbook of Physiology section 1 (eds. Brookhart, J. M., Mountcastle, V. M., Kandel, E. R. & Geiger, S. R.) 877–944 (Williams and Wilkins, Baltimore, 1977).

    Google Scholar 

  32. Matteoli, M. et al. Synaptic vesicle endocytosis mediates the entry of tetanus neurotoxin into hippocampal neurons. Proc. Natl. Acad. Sci. USA 93, 13310–13315 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Trimble for TeNT-LC and BoNT/D-LC, A. Zdanovsky for BoNT/B-LC, C. C. Shone for anti-VAMP and H. Bellen for anti-synaptotagmin. We thank M. Salter for assistance with the phosphotyrosine assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Ying Hua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, SY., Charlton, M. Activity-dependent changes in partial VAMP complexes during neurotransmitter release. Nat Neurosci 2, 1078–1083 (1999). https://doi.org/10.1038/16005

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/16005

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing