Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases

Abstract

Progression through the eukaryotic cell cycle is driven by the orderly activation of cyclin-dependent kinases (CDKs). For activity, CDKs require association with a cyclin and phosphorylation by a separate protein kinase at a conserved threonine residue (T160 in CDK2). Here we present the structure of a complex consisting of phosphorylated CDK2 and cyclin A together with an optimal peptide substrate, HHASPRK. This structure provides an explanation for the specificity of CDK2 towards the proline that follows the phosphorylatable serine of the substrate peptide, and the requirement for the basic residue in the P+3 position of the substrate. We also present the structure of phosphorylated CDK2 plus cyclin A3 in complex with residues 658–668 from the CDK2 substrate p107. These residues include the RXL motif required to target p107 to cyclins. This structure explains the specificity of the RXL motif for cyclins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The location of the peptide-binding sites on phospho-CDK2–cyclin A3 complex.
Figure 2: Contacts between CDK2 and the substrate peptide.
Figure 3: The recruitment-peptide-binding site of the phospho-CDK2–cyclin A3 complex.
Figure 4: The recruitment peptide inhibits the phosphorylation of GST–pRb (residues 792–928) but not phosphorylation of histone H1.

Similar content being viewed by others

References

  1. Morgan, D. O. Cyclin-dependent kinases: engines, clocks and microprocessors. Annu. Rev. Cell. Dev. Biol. 13, 261– 291 (1997).

    Article  CAS  Google Scholar 

  2. De Bondt, H. L. et al. Crystal structure of cyclin dependent kinase 2. Nature 363, 592–602 ( 1993).

    Article  Google Scholar 

  3. Brown, N. R. et al. The crystal structure of cyclin A. Structure 3, 1235–1247 (1995).

    Article  CAS  Google Scholar 

  4. Jeffrey, P. D. et al. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376, 313– 320 (1995).

    Article  CAS  Google Scholar 

  5. Russo, A., Jeffrey, P. D. & Pavletich, N. P. Structural basis of cyclin dependent kinase activation by phosphorylation. Nature Struct. Biol. 3, 696–700 (1996).

    Article  CAS  Google Scholar 

  6. Brown, N. R. et al. Effects of phosphorylation of threonine 160 on cyclin-dependent kinase 2 structure and activity. J. Biol. Chem. 274 , 8746–8756 (1999).

    Article  CAS  Google Scholar 

  7. Songyang, Z. et al. Use of an oriented peptide library to determine the optimal substrates of protein kinases. Curr. Biol. 4, 973–982 (1994).

    Article  CAS  Google Scholar 

  8. Higashi, H. et al. Differences in substrate specificity between CDK2-cyclin A and CDK2-cyclin E in vitro. Biochem. Biophys. Res. Commun. 216, 520–525 ( 1995).

    Article  CAS  Google Scholar 

  9. Holmes, J. K. & Solomon, M. J. A predictive scale for evaluating cyclin depedent kinase substrates. J. Biol. Chem. 271 , 25240–25246 (1996).

    Article  CAS  Google Scholar 

  10. Kitagawa, M. et al. The consensus motif for phosphorylation by cyclin D1-CDK4 is different from that for phosphorylation by cyclin A/E-CDK2. EMBO J. 15, 7060–7069 ( 1996).

    Article  CAS  Google Scholar 

  11. Zarkowski, T., U, S., Harlow, E. & Mittnacht, S. Monoclonal antibodies for underphosphorylated retinoblastoma protein identify a cell cycle regulated phosphorylation site targeted by CDKs. Oncogene 14, 249–254 (1997).

    Article  Google Scholar 

  12. Zhu, L., Harlow, E. & Dynlacht, B. D. p107 uses a p21CIP1-related domain to bind cyclin/cdk2 and regulate interactions with E2F. Genes Dev. 9, 1740–1752 ( 1995).

    Article  CAS  Google Scholar 

  13. Adams, P. D. et al. Identification of a cyclin-CDK2 recognition motif present in substrates and p21-like cyclin dependent kinase inhibitors. Mol. Cell Biol. 16, 6623–6633 (1996).

    Article  CAS  Google Scholar 

  14. Chen, J., Saha, P., Kornbluth, S., Dynlacht, B. D. & Dutta, A. Cyclin binding motifs are essential for the function of p21cip1. Mol. Cell Biol. 16, 4673–4682 (1996).

    Article  CAS  Google Scholar 

  15. Dynlacht, B. D., Moberg, K., Lees, J. A., Harlow, E. & Zhu, L. Specific regulation of E2F family members by cyclin-dependent kinases. Mol. Cell Biol. 17, 3867–3875 (1997).

    Article  CAS  Google Scholar 

  16. Schulman, B., Lindstrom, D. L. & Harlow, E. Substrate recruitment to cyclin-dependent kinase 2 by a multipurpose docking site on cyclin A. Proc. Natl Acad. Sci. USA 95, 10453–10458 ( 1998).

    Article  CAS  Google Scholar 

  17. Adams, P. D. et al. Retinoblastoma protein contains a C-terminal motif that targets it for phosphorylation by cyclin-CDK complexes. Mol. Cell Biol. 19, 1068–1080 ( 1999).

    Article  CAS  Google Scholar 

  18. Chen, Y.-N. P. et al. Selective killing of transformed cells by cyclin/cyclin dependent kinase 2 antagonists. Proc. Natl Acad. Sci. USA 96, 4325–4329 (1999).

    Article  CAS  Google Scholar 

  19. Nigg, E. A. Targets of cyclin-dependent protein kinases. Curr. Opin. Cell Biol. 5, 187–193 ( 1993).

    Article  CAS  Google Scholar 

  20. Sarcevic, B., Lilischkis, R. & Sutherland, R. L. Differential phosphorylation of T-47D human breast cancer cell substrates by D1, D3, E, and A-type cyclin-CDK complexes. J. Biol. Chem. 272, 33327–33337 (1997).

    Article  CAS  Google Scholar 

  21. Kelly, B. L., Wolfe, K. G. & Roberts, J. M. Identification of a substrate-targeting domain in cyclin E necessary for phosphorylation of the retinoblastoma protein. Proc. Natl Acad. Sci. USA 95, 2535– 2540 (1998).

    Article  CAS  Google Scholar 

  22. Petersen, B. O., Lukas, J., Sorensen, C. S., Bartek, J. & Helin, K. Phosphorylation of mammalian CDC6 by cyclin A/CDK2 regulates its subcellular localisation. EMBO J. 18, 396–410 ( 1999).

    Article  CAS  Google Scholar 

  23. Lowe, E. D. et al. The crystal structure of a phosphorylase kinase peptide substrate complex: kinase substrate recognition. EMBO J. 16, 6646–6658 (1997).

    Article  CAS  Google Scholar 

  24. Skamnaki, V. T. et al. The catalytic mechanism of phosphorylase kinase probed by mutational studies. Biochemistry (in the press).

  25. Russo, A. A., Jeffrey, P. D., Patten, A. K., Massague, J. & Pavletich, N. P. Crystal structure of the p27KIP1 cyclin-dependent-kinase inhibitor bound to the cyclin A-CDK2 complex. Nature 382, 325– 331 (1996).

    Article  CAS  Google Scholar 

  26. Canagarajah, B. J., Khokhlatchev, A., Cobb, M. H. & Goldsmith, E. J. Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell 90, 859–869 ( 1997).

    Article  CAS  Google Scholar 

  27. Solomon, M. J. & Kaldis, P. in Results and Problems in Cell Differentiation (ed. Pagano, M.) 79– 109 (Springer, New York, 1998).

    Google Scholar 

  28. Sharma, P. et al. Identification of substrate binding site of cyclin dependent kinase 5. J. Biol. Chem. 274, 9600– 9606 (1999).

    Article  CAS  Google Scholar 

  29. Kobayashi, H. et al. Identification of the domains in cyclin A required for binding to, and activation of, p34cdc2 and p32cdk2 protein kinase subunits. Mol. Biol. Cell. 3, 1279–1294 (1992).

    Article  CAS  Google Scholar 

  30. Schreuder, H. A., Groendijk, H., van der Laan, J. M. & Wierenga, R. K. The transfer of protein crystals from their original mother liquor to a solution with a completely different precipitant. J. Appl. Cryst. 21, 426–429 (1988).

    Article  CAS  Google Scholar 

  31. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 ( 1990).

    Article  Google Scholar 

  32. Murshudov, G. N., Vagen, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240– 255 (1997).

    Article  CAS  Google Scholar 

  33. Read, R. J. Improved coefficients for map calculation using partial structures with errors . Acta Crystallogr. A 42, 140– 149 (1986).

    Article  Google Scholar 

  34. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved method for building models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110 –119 (1991).

    Article  Google Scholar 

  35. Lamzin, V. S. & Wilson, K. S. Automated refinement of protein models. Acta Crystallogr. D 49, 129– 147 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Hanlon for the GST–CDK2 GST–Cak1 coexpression vector; J. Hayles for the Schizosaccharomyces pombe p13suc1 peptide; J. Tucker for optimizing the phospho-CDK2 expression; and the beam-line scientists and staff at Elettra, Trieste, and ESRF station ID14 for their support during data collection. This work was supported by the Medical Research Council and the Royal Society.

Correspondence and requests for materials should be addressed to L.N.J. Coordinates have been deposited in Protein DataBank under accession number 1QMZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise N. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, N., Noble, M., Endicott, J. et al. The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat Cell Biol 1, 438–443 (1999). https://doi.org/10.1038/15674

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/15674

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing