Skip to main content
Log in

Local Perfusion of Nicotine Differentially Modulates Somatodendritic Dopamine Release in the Rat Ventral Tegmental Area After Nicotine Preexposure

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We examined the effects of nicotine perfusion into the ventral tegmental area (VTA) on extracellular dopamine (DA) levels in rats using in vivo microdialysis. Local perfusion with nicotine for 80 min (10–100 μM) modestly increased (∼105–131% of basal) the extracellular DA levels in the VTA of rats that had been pretreated with saline for 5 days. In animals that had been pretreated with nicotine for 5 days (0.3 mg/kg, s.c.), perfusion with nicotine for 80 min (10–100 μM) dose-dependently increased the extracellular DA levels in the VTA of rats and did so to a greater extent than in saline-pretreated animals (125–171% of basal). Co-perfusion through the dialysis probe with 100 μM mecamylamine, a nonselective nicotinic acetylcholine receptor (nAChR) antagonist, or 100 μM dihydro-β-erythroidine, a high affinity and competitive nAChR antagonist, attenuated the enhancement of extracellular DA levels produced by 100 μM nicotine alone. These results suggest that local nicotine challenge potentiated the somatodendritic DA release after nicotine preexposure by stimulation of high-affinity nAChRs in the VTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Rose, J. E. and Corrigall, W. A. 1997. Nicotine self-administration in animals and humans: similarities and differences. Psychopharmacology 130:28–40.

    Google Scholar 

  2. Lundahl, L. H., Henningfield, J. E., and Lukas, S. E. 2000. Mecamylamine blockade of both positive and negative effects of IV nicotine in human volunteers. Pharmacol. Biochem. Behav. 66:637–643.

    Google Scholar 

  3. Laviolette, S. R. and Van Der Kooy, D. 2004. The neurobiology of nicotine addiction: bridging the gap from molecules to behaviour. Nat. Rev. Neurosci. 5:55–65.

    Google Scholar 

  4. Dani, J. A. 2003. Roles of dopamine signaling in nicotine addiction. Mol. Psychiatry 8:255–256.

    Google Scholar 

  5. Koob, G. F., Sanna, P. P., and Bloom, F. E. 1998. iNeuroscience of addiction. Neuron 21:467–476.

    Google Scholar 

  6. Balfour, D. J. K, Benwell, M. E. M., Birrell, C. E., Kelly, R. J., and Al-Aloul, M. 1998. Sensitization of the mesoaccumbens dopamine response to nicotine. Pharmacol. Biochem. Behav. 59: 1021–1030.

    Google Scholar 

  7. Corrigall, W. A., Franklin, K. B. J., Coen, K. M., and Clarke, P. B. S. 1992. The mesolimbic dopamine system is implicated in the reinforcing effects of nicotine. Psychopharmacology 107: 285–289.

    Google Scholar 

  8. Di Chiara, G. 2000. Behavioral pharmacology and neurobiology of nicotine reward and dependence. In: Clementi, F., Fornasari, D., and Gotti, C., (eds.), Handbook of Experimental Pharmacology, Neuronal Nicotinic Receptors, vol. 144, Springer-Verlag, Berlin, Germany, pp. 603–750.

    Google Scholar 

  9. Corrigall, W. A. and Coen, K. M. 1991 Selective dopamine antagonists reduce nicotine self-administration. Psychopharmacology 104:167–170.

    Google Scholar 

  10. Klink, R., d'Exaerde, A. D. K., Zoli, M., and Changeux, J-P. 2001. Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J. Neurosci. 21:1452–1463.

    Google Scholar 

  11. Clarke, P. B. S. and Pert, A. 1985. Autoradiographic evidence for nicotine receptors on nigrostriatal and mesolimbic dopaminergic neurons. Brain Res. 348:355–358.

    Google Scholar 

  12. Picciotto, M. R. 2003. Nicotine as a modulator of behavior: beyond the inverted U. Trends Pharmacol. Sci. 24:493–498.

    Google Scholar 

  13. Corrigall, W. A., Coen, K. M., and Adamson, K. L. 1994. Selfadministered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Res. 653:278–284.

    Google Scholar 

  14. Picciotto, M. R., Zoli, M., Rimondini, R., Lena, C., Marubio, L. M., Pich, E. M., Fuxe, K., and Changeux, J-P. 1998. Acetylcholine receptors containing the _2 subunit are involved in the reinforcing properties of nicotine. Nature 391:173–177.

    Google Scholar 

  15. Sziraki, I., Sershen, H., Benuck, M., Hashim, A., and Lajtha, A. 1998. Receptor systems participating in nicotine specific-effects. Neurochem. Int. 33:445–457.

    Google Scholar 

  16. Sziraki, I., Sershen, H., Hashim, A., and Lajtha, A. 2002. Receptors in the ventral tegmental area mediating nicotine-induced dopamine release in the nucleus accumbens. Neurochem. Res. 27: 253–261.

    Google Scholar 

  17. Nisell, M., Nomikos, G. G., and Svensson, T. H. 1994. Systemic nicotine-induced dopamine release in the rat nucleus accumbens is regulated by nicotinic receptors in the ventral tegmental area. Synapse 16:36–44.

    Google Scholar 

  18. Fu, Y., Matta, S. G., Gao, W., and Sharp, B. M. 2000. Local α-bungarotoxin-sensitive nicotinic receptors in the nucleus accumbens modulate nicotine-stimulated dopamine secretion in vivo. Neuroscience 101:369–375.

    Google Scholar 

  19. Schilstrom, B., Svensson, H. M., Svensson, T. H., and Nomikos, G. G. 1998. Nicotine and food induced dopamine release in the nucleus accumbens of the rat: putative role of _7 nicotinic receptors in the ventral tegmental area. Neuroscience 85:1005–1009.

    Google Scholar 

  20. Pontieri, F. E., Tanda, G., Orzi, F., and Di Chiara, G. 1996. Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature 382:255–257.

    Google Scholar 

  21. Benwell, M. E. M. and Balfour, D. J. K. 1998. The influences of lobeline on nucleus accumbens dopamine and locomotor responses to nicotine in the nicotine-pretreated rats. Br. J. Pharmacol. 125:1115–1119.

    Google Scholar 

  22. Tizabi, Y., Copeland, R. L., Lois, V. A., and Taylor, R. E. 2002. Effects of combined systemic alcohol and central nicotine administration into ventral tegmental area on dopamine release in the nucleus accumbens. Alcohol Clin. Exp. Res. 26:394–390.

    Google Scholar 

  23. Nisell, M., Nomikos, G. G., Panagis, G., and Svensson, T. H. 1994. Infusion of nicotine in the ventral tegmental area or the nucleus accumbens of the rat differentially affects accumbal dopamine release. Pharmacol. Toxicol. 75:348–352.

    Google Scholar 

  24. Benwell, M. E. M. and Balfour, D. J. K. 1992. The effects of acute and repeated nicotine treatment on nucleus accumbens dopamine and locomotor activity. Br. J. Pharmacol. 105:849–856.

    Google Scholar 

  25. Kalivas, P. W. 1993. Neurotransmitter regulation of dopamine neurons in the ventral tegmental area. Brain Res. Rev. 18:75–113.

    Google Scholar 

  26. Rahman, S., Zhang, J., and Corrigall, W. A. 2003. Effects of acute and chronic nicotine on somatodendritic DA release of the rat ventral tegmental area: in vivo microdialysis study. Neurosci. Lett. 348:61–64.

    Google Scholar 

  27. Paxinos, G. and Watson, C. 1986. The Rat Brain in Stereotaxic Coordinates, Academic Press, New York.

    Google Scholar 

  28. Rahman, S. and McBride, W. J. 2000. Feedback control of mesolimbic somatodendritic dopamine release in rat brain. J. Neurochem. 74:684–692.

    Google Scholar 

  29. Rahman, S. and McBride, W. J. 2002. Involvement of GABA and cholinergic receptors in the nucleus accumbens on feedback control of somatodendritic dopamine release in the VTA. J. Neurochem. 80:646–654.

    Google Scholar 

  30. Reid, R. T., Lloyed, G. K., and Rao, T. S. 1999. Pharmacological characterization of nicotine-induced ACh release in rat hippocampus in vivo: evidence for a permissive dopamine synapse. Br. J. Pharmacol. 127:1486–1494.

    Google Scholar 

  31. Westerink, B. H. C., Kwint, H. F., and de Vries, J. B. 1996. The pharmacology of mesolimbic dopamine neurons: a dual probe microdialysis study in the ventral tegmental area and nucleus accumbens of the rat brain. J. Neurosci. 16:2605–2611.

    Google Scholar 

  32. Grenhoff, J., Aston-Jones, G., and Svensson, T. H. 1986. Nicotinic effects on the firing pattern of midbrain dopamine neurons. Acta. Physiol. Scand. 128:351–358.

    Google Scholar 

  33. Calabresi, P., Lacey, M. G., and North, R. A. 1989. Nicotinic excitation of rat ventral tegmental neurons in vitro studies by intracellular recording. Br. J. Pharmacol. 98:135–140

    Google Scholar 

  34. Pidoplichko, V. I., DeBias, M., Williams, J. T., and Dani, J. A. 1997. Nicotine activates and desensitizes midbrain dopamine neurons. Nature 390:40–404.

    Google Scholar 

  35. Yin, R. and French, E. D. 2000. A comparison of the effects of nicotine on dopamine and non-dopamine neurons in the rat ventral tegmental area: an in vitro electrophysiological study. Brain Res. Bull. 51:507–514.

    Google Scholar 

  36. Reuben, M., Boye, S., Clarke, P. B. S. 2000. Nicotinic receptors modulating somatodendritic and terminal dopamine release differ pharmacologically. Eur. J. Pharmacol. 393:39–49.

    Google Scholar 

  37. Mansvelder, H. D. Keath, J. R., and McGehee, D. S. 2002. Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron 33:905–918.

    Google Scholar 

  38. Wooltorton, J. R. A., Pidoplichko, V. I., Broide, R. S., and Dani, J. A. 2003. Differential desensitization and distribution of nicotinic receptor subtypes in midbrain dopamine areas. J. Neurosci. 23:3176–3185.

    Google Scholar 

  39. Corrigall, W. A. 1999. Nicotine self-administration in animals as a dependence model. Nicotine Tobacco Res. 1:11–20.

    Google Scholar 

  40. Benwell, M. E. M., Balfour, D. J. K., and Birell, C. E. 1995. Desensitization of the nicotine-induced mesolimbic dopamine responses during constant infusion with nicotine. Br. J. Pharmacol. 114:454–460.

    Google Scholar 

  41. Gerasimov, M. R., Franceschi, M., Volkow, N. D., Rice, O., Schiffer, W. K., and Dewey, S. L. 2000. Synergistic interactions between nicotine and cocaine or methylphenidate depend on the dose of dopamine transporter inhibitor. Synapse 38:432–437.

    Google Scholar 

  42. Izenwasser, S., Jacocks, H. M., Rosenberger, J. G., and Cox, B. M. 1991. Nicotine indirectly inhibits [3H] dopamine uptake at concentrations that do not directly promote [3H]dopamine release in rat striatum. J. Neurochem. 56:603–610.

    Google Scholar 

  43. Mansvelder, H. D. and McGehee, D. S. 2002. Cellular and synaptic mechanisms of nicotine addiction. Int. J. Neurobiol. 53:606–617.

    Google Scholar 

  44. Harvey, S. C., Maddox, F. N., and Luetje, C. W. 1996. Multiple determinants of dihydro-_-erythroidine sensitivity on rat neuronal nicotinic receptor alpha subunits. J. Neurochem. 67:1953–1959.

    Google Scholar 

  45. Sershen, H., Balla, A., Lajtha, A., and Vizi, E. S. 1997. Characterization of nicotinic receptors involved in the release of noradrenaline from the hippocampus. Neuroscience 77:121–130.

    Google Scholar 

  46. Vezina, P., Lorrain, D. S., Arnold, G. M., Austin, J. D., and Suto, N. 2002. Sensitization of midbrain DA neuron reactivity promotes the pursuit of amphetamine. J. Neurosci. 22:4564–4662.

    Google Scholar 

  47. Schoffelmeer, A. N., De Vries, T. J., Wardeh, G., van de Ven, H. W., and Vanderschuren, L. J. 2002. Psychostimulant-induced behavioral sensitization depends on nicotinic receptor activation. J. Neurosci. 22:269–76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahman, S., Zhang, J. & Corrigall, W.A. Local Perfusion of Nicotine Differentially Modulates Somatodendritic Dopamine Release in the Rat Ventral Tegmental Area After Nicotine Preexposure. Neurochem Res 29, 1687–1693 (2004). https://doi.org/10.1023/B:NERE.0000035803.64724.17

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000035803.64724.17

Navigation