Skip to main content
Log in

A 5-HT7 Heteroreceptor-Mediated Inhibition of [3H]Serotonin Release in Raphe Nuclei Slices of the Rat: Evidence for a Serotonergic–Glutamatergic Interaction

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Midbrain slices containing the dorsal and medial raphe nuclei were prepared from rat brain, loaded with [3H]serotonin ([3H]5-HT), superfused, and the electrically induced efflux of radioactivity was determined. The nonselective 5-HT receptor agonist 5-carboxamido-tryptamine (5-CT; 0.001 to 1 μM) inhibited the electrically stimulated [3H]5-HT overflow from raphe nuclei slices (IC50 of 3.34 ± 0.37 nM). This effect of 5-CT on [3H]5-HT overflow was antagonized by the 5-HT7 receptor antagonist SB-258719 (10 μM) and the 5-HT1B/1D antagonist SB-216641 (1 μM), the IC50 values for 5-CT in the presence of SB-258719 and SB-216641 were 94.23 ± 4.84 and 47.81 ± 4.66 nM. The apparent pA2 values for SB-258719 and SB-216641 against 5-CT were 6.43 and 7.12, respectively. The inhibitory effect of 5-CT on [3H]5-HT overflow was weakly antagonized by 10 μM of WAY-100635, a 5-HT1A receptor antagonist (IC50 6.65 ± 0.56 nM, apparent pA2 4.99). The antagonist effect of SB-258719 (10 μM) on 5-CT–evoked [3H]5-HT overflow inhibition was also determined in the presence of 1 μM SB-216641 or 1 μM SB-216641 and 10 μM WAY-100635, and additive interactions were found between the antagonists of 5-HT7 and 5-HT1 receptor subtypes. Addition of the Na+ channel blocker tetrodotoxin (1 μM) in the presence of SB-216641 (1 μM) and WAY-100635 (10 μM) attenuated the inhibitory effect of 5-CT on KCl-induced [3H]5-HT overflow. These findings indicate that 5-CT inhibits [3H]5-HT overflow from raphe nuclei slices of the rat by stimulation of 5-HT7 and 5-HT1B/1D receptors, whereas the role of 5-HT1A receptors in this inhibition is less pronounced. They also suggest that 5-HT7 receptors are probably not located on serotonergic neurons and thus may serve as heteroreceptors in regulation of 5-HT release in the raphe nuclei. 5-CT (0.1 μM) also inhibited [3H]glutamate release, and SB-258719 (10 μM) suspended this effect. We therefore speculated that the axon terminals of the glutamatergic cortico-raphe neurons may possess 5-HT7 receptors that inhibit glutamate release, which consequently leads to decreased activity of serotonergic neurons. The postulated glutamatergic–serotonergic interaction in the raphe nuclei was further evidenced by the finding that N-methyl-d-aspartate and AMPA enhanced [3H]5-HT release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

references

  1. Vandermaelen, C. P. and Aghajanian, G. K. 1983. Electrophysiological and pharmacological characterization of serotonin dorsal raphe neurons recorded extracellularly and intracellularly in rat brain slices. Brain Res. 289:109–119.

    Google Scholar 

  2. Pineyro, G. and Blier, P. 1996. Regulation of 5-hydroxytryptamine release from rat midbrain raphe nuclei by 5-hydroxytryptamine1D receptors: effect of tetrodotoxin, G protein inactivation and long-term antidepressant administration. J. Pharm. Exp. Ther. 276:697–707.

    Google Scholar 

  3. Barnes, N. M. and Sharp, T. 1999. A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152.

    Google Scholar 

  4. Engel, G. Gothert, M., Hoyer, D., Schlicker, E., and Hillenbrand, K. 1986. Identify of inhibitory presynaptic 5-hydroxytryptamine (5-HT) autoreceptors in the rat cortex with 5-HT1B binding sites. Naunyn-Schmiedebergs Arch. Pharmacol. 332:1–7.

    Google Scholar 

  5. Davidson, C. and Stamford, J. A. 1995. Evidence that 5-hydroxytryptamine release in rat dorsal raphe nucleus is controlled by 5-HT1A, 5-HT1B and 5-HT1D autoreceptors. Br. J. Pharmacol. 114:1107–1109.

    Google Scholar 

  6. El Mansari, M. and Blier, P. 1996. Functional characterization of 5-HT1D autoreceptors on the modulation of 5-HT release in the guinea-pig mesencephalic raphe, hippocampus and frontal cortex. Br. J. Pharmacol. 118:681–689.

    Google Scholar 

  7. Spouse, J., Reynolds, L., and Rollema, H. 1997. Do 5-HT1B/1D autoreceptors modulate dorsal raphe cell firing? In vivo electrophysiological studies in guinea-pigs with GR127935. Neuropharmacology 36:559–567.

    Google Scholar 

  8. Craven, R., Grahame-Smith, D., and Newberry, N. 1994. WAY-100635 and GR 127935: effects on 5-hydroxytryptamine-containing neurones. Eur. J. Pharmacol. 271:R1–R3.

    Google Scholar 

  9. Hjorth, S. and Magnusson, T. 1988. The 5-HT1A receptor agonist, 8-OH-DPAT, preferentially activates cell body 5-HT autoreceptors in rat brain in vivo. Naunyn-Schmiedebergs Arch. Pharmacol. 338:463–471.

    Google Scholar 

  10. Palacios, J. M., Pazos, A., and Hoyer, D. 1987. Characterization and mapping of 5-HT1A sites in the brain of animals and man. Pages 67–81, in Dourish, C. T., Ahlenins, S., and Hutson, P. H. (ed), Brain 5-HT1A receptors, Ellis Horwood, Chichester.

    Google Scholar 

  11. O'Connor, J. J. and Kruk, Z. L. 1992. Pharmacological characteristics of 5-hydroxytryptamine autoreceptors in rat brain slices incorporating the dorsal raphe or the suprachiasmatic nucleus. Br. J. Pharmacol. 106:524–532.

    Google Scholar 

  12. Benuck, M. and Reith, M. E. A. 1992. Dopamine releasing effect of phenylbiguanide in rat striatal slices. Naunyn-Schmiedebergs Arch. Pharmacol. 345:666–672.

    Google Scholar 

  13. Blier, P. and Bouchard, C. 1993. Functional characterization of a 5-HT3 receptor which modulates the release of 5-HT release in the guinea-pig brain. Br. J. Pharmacol. 108:13–22.

    Google Scholar 

  14. Bagdy, E., Solyom S., and Harsing L. G, Jr. 1998. Feedback stimulation of somatodendritic serotonin release: a 5-HT3 receptor-mediated effect in the raphe nuclei of the rat. Brain Res. Bul. 45:203–208.

    Google Scholar 

  15. Roberts, C., Thomas, D. R., and Kew, J. N. C. 2002. GABAergic modulation of 5-HT7 receptor mediated effects on 5-HT efflux: an in vitro fast cyclic voltammetry study. Soc. Neurosci. 2002:Abstr. 398.17.

  16. Vanhoenacker, P., Haegemann, G., and Leysen, J. E. 2000. 5-HT7 receptors: current knowledge and future prospects. Trends Pharm. Sci. 21:70–77.

    Google Scholar 

  17. Bard, J. A., Zgombick, J., Adham, N., Vaysee, P., Branchek, T. A., and Weinshank, R. L. 1993. Cloning of a novel human serotonin receptor (5-HT7) positively linked to adenylate cyclase. J. Biol. Chem. 268:23422–23426.

    Google Scholar 

  18. Ruat, M., Traiffort, E., Luers, R., Tardivel-Lacombe, J., Diaz, J., Arrang, J. M., and Schwartz, J. C. 1993. Molecular cloning, characterization, and localization of a high-affinity serotonin receptor (5-HT7) activating cAMP formation. Proc. Natl. Acad. Sci. USA 90:8547–8551.

    Google Scholar 

  19. Hoyer, D., Hannon, J. P., and Martin, G. R. 2002. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharm. Biochem. Behav. 71:533–554.

    Google Scholar 

  20. Forbes, I. T., Dabbs, S., Duckworth, D. M., Jennings, A. J., King, F. D., Lovell, P. J., Brown, A. M., Collin, L., Hagan, J. J., Middlemniss, D. N., Riley, G. J., Thomas, D. R., and Upton, N. 1998. (R)-3,N-dimethyl-N-[1-methyl-3-(4-methyl-piperiodin-1-y)propyl]benzenesulfonamide: the first selective 5-Ht7 receptor antagonist. J. Med. Chem. 41:655–657.

    Google Scholar 

  21. Hagan, J. J., Price, G. W., Jeffrey, P., Deeks, N. J., Stean, T., Piper, D., Smith, M. I., Upton, N., Medhurst, A. D., Middlemniss, D. N., Riley, G. J., Lovell, P. J., Bromidge, S. M., and Thomas, D. R. 2000. Characterization of SB-269970-A, a selective 5-HT7 receptor antagonist. Br. J. Pharmacol. 130:539–548.

    Google Scholar 

  22. Lovell, P. J., Bromidge, S. M., Dabbs, S., Duckworth, D. M., Forbes, I. T., Jennings, A. J., King, F. D., Middlemniss, D. N., Rahman, S. K., Saunders, D. V., Collin, L. L., Hagan, J. J., Riley, G. J., and Thomas, D. R. 2000. A novel, potent, and selective 5-HT7 antagonist: (R)-3-(2-(2-(4-methylpiperidin-1-yl)-ethyl)pyrrolidine-1-sulfonyl)phenol (SB-269970). J. Med. Chem. 43:342–345.

    Google Scholar 

  23. Kikuchi, C., Nagaso, H., Hiranuma, T., and Koyama, M. 1999. Tetrahydrobenzindoles: selective antagonists of the 5-HT7 receptor. J. Med. Chem. 42:533–535.

    Google Scholar 

  24. Hinschberger, A., Gillard, A. C., Dauphin, F., and Rault, S. 2000. 1,2,3,4,5,6-Hexahydrobenzo-[h][1,6]naphthyridin-5-ones: 5-HT7 receptor affinity. Pharm. Pharmacol. Commun. 6:67–71.

    Google Scholar 

  25. Thomas, D. R., Gittins, S. A., Collin, L. L., Middlemniss, D. N., Riley, G., Hagan, J., Gloger, I., Ellis, C. E., Forbes, I. T., and Brown, A. M. 1998. Functional characterization of the human cloned 5-HT7 receptor (long form); antagonists profile of SB-258719. Br. J. Pharmacol. 124:1300–1306.

    Google Scholar 

  26. Roth, B. L., Craigo, S. C., Choudhary, M. S., Uluer, A., Monsma, F. J., Shen, Y., Meltzer, H. Y., and Sibley, D. R. 1994. Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine-6 and 5-hydroxytryptamine-7 receptors. J. Pharm. Exp. Ther. 268:1403–1410.

    Google Scholar 

  27. Hirst, W. D., Price, G. W., Rattray, M., and Wilkin, G. P. 1997. Identification of 5-hydroxytryptamine receptors positively coupled to adenylyl cyclase in rat cultured astrocytes. Br. J. Pharmacol. 120:509–515.

    Google Scholar 

  28. Adham, N., Zgombick, J. M., Bard, J., and Branchek, T. A. 1998. Functional characterization of the recombinant human 5-hydroxytryptamine7(a) receptor isoform coupled to adenylate cyclase stimulation. J. Pharm. Exp. Ther. 287:508–514.

    Google Scholar 

  29. To, Z. P., Bonhaus, D. W., Eglen, R. M., and Jakeman, L. B. 1995. Characterization and distribution of putative 5-ht7 receptors in guinea-pig brain. Br. J. Pharmacol. 115:107–116.

    Google Scholar 

  30. Gustafson, E. L., Durkin, M. M., Bard, J. A., Zgombick, J., and Branchek, T. A. 1996. A receptor autoradiographic and in situ hybridization analysis of the distribution of the 5-HT7 receptor in rat brain. Br. J. Pharmacol. 117:657–666.

    Google Scholar 

  31. Roberts, C., Allen, L., Langmead, C. J., Hagan, J. J., Middlemniss, D. N., and Price, G. W. 2001. The effect of SB-269970, a selective 5-HT7 receptor antagonist, on 5-HT release from serotonergic terminals and cell bodies. Br. J. Pharmacol. 132:1574–1580.

    Google Scholar 

  32. Kerwin, R. W. and Pycock, C. J. 1979. The effect of some putative neurotransmitters on the release of 5-hydroxytryptamine and γ-aminobutyric acid from slices of the rat midbrain raphe area. Neuroscience 4:1359–1365.

    Google Scholar 

  33. Bagdy, E. and Harsing, L. G., Jr. 1995. The role of various calcium and potassium channels in the regulation of somatodendritic serotonin release. Neurochem. Res. 20:1409–1415.

    Google Scholar 

  34. Harsing, L. G. Jr., Sershen, H., and Lajtha, A. 1992. Dopamine efflux from striatum after chronic nicotine: evidence for autoreceptor desensitization. J. Neurochem. 59:48–54.

    Google Scholar 

  35. Maura, G., Gemignani, A., and Raiteri, M. 1985. Alpha-2 adrenoceptors in rat hypothalamus and cerebral cortex: functional evidence for pharmacologically distinct subpopulations. Eur. J. Pharmacol. 116:335–339.

    Google Scholar 

  36. Harsing, L. G., Jr., Csillik-Perczel, V., Ling, I, and Solyom, S. 2000 Negative allosteric modulators of AMPA-preferring receptors inhibit [3H]GABA release in rat striatum. Neurochem. Internat. 37:33–45.

    Google Scholar 

  37. Bromidge, S. M., Brown, A. M., Clarke, S. E., Dodgson, K., Gager, T., Grassam, H. L., Jeffrey, P. M., Joiner, G. F., King, F. D., Middlemniss, D. N., Moss, S. F., Newman, H., Rily, G. Routledge, C., and Wyman, P. 1999. 5-Chloro-N-(4-methoxy-3-piperazine-1-yl-phenyl)-3-methyl-2-benzothiophenesulfonamide (SB-271046): a potent, selective, and orally bioavailable 5-HT6 receptor antagonist. J. Med. Chem. 42:202–205.

    Google Scholar 

  38. Starke, K. 1987. Presynaptic alpha-adrenoceptors. Rev. Physiol. Biochem. Pharmacol. 107:73–146.

    Google Scholar 

  39. Harsing, L. G., Jr. and Zigmond, M. J. 1997. Influence of dopamine on GABA release in striatum: evidence for D1-D2 interactions and non-synaptic influences. Neuroscience 77:419–429.

    Google Scholar 

  40. Boess, F. G. and Martin, I. L. 1994. Molecular biology of 5-HT receptors. Neuropharmacology 33:275–317.

    Google Scholar 

  41. Hoyer, D., Clarke, D. E., Fozard, J. E., Hartig, P. R., Martin, G. R., Mylecharane, E. J., Saxena, P. R., and Humbrey, P. P. A. 1994. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol. Rev. 46:157–204.

    Google Scholar 

  42. Voigt, M. M., Laurie, D. J., Seeburgh, P. H., and Bach, A. 1991. Molecular cloning and characterization of a rat brain cDNA encoding a 5-hydroxytryptamine1B receptor. EMBO J. 10:4017–4023.

    Google Scholar 

  43. Boddeke, H. W. G. M., Fargin, A., Raymond, J. R., Schoeffter, P., and Hoyer, D. 1992. Agonist/antagonist interactions with cloned human 5-HT1A receptors: variations in intrinsic activity studies in transfected HeLa cells. Naunyn-Schmiedebergs Arch. Pharmacol. 345:257–263.

    Google Scholar 

  44. Hamblin, M. W., McGuffin, R. W., Metcalf, M. A., Dorsa, D. M., and Merchant K. M. 1992. Distinct 5-HT1B and 5-HT1D serotonin receptors in rat: structural and pharmacological characterization of the two cloned receptors. Mol. Cell Neurosci. 3:578–587.

    Google Scholar 

  45. Erlander, M. G., Lovenberg, T. W., Baron, B. M., De Lecea, L., Danielson, P. E., Racke, M., Slone, A. L., Siegel, B. W., Foye, P. E., Cannon, K., Burns, J. E., and Sutcliffe, J. G. 1993. Two members of a distinct subfamily of 5-hydroxytryptamine receptors differentially expressed in rat brain. Proc. Natl. Acad. Sci. USA 52:949–958.

    Google Scholar 

  46. Bourdon, D. M., Camden, J. M., Landon, L. A., Levy, F. O., and Turner, J. T. 2000. Identification of the adenylyl cyclase-activating 5-hydroxytryptamine receptor subtypes expressed in the rat submandibular gland. Br. J. Pharmacol. 130:104–108.

    Google Scholar 

  47. Middlemniss, D. N. and Fozard, J. R. 1983. 8-Hydroxy-2-(di-n-propylamino)tetralin discriminates between subtypes of the 5-HT1 recognition site. Eur. J. Pharmacol. 90:51–153.

    Google Scholar 

  48. Lovenberg, T. W., Baron, B. M., de Lecea, L., Miller, J. D., Prosser, R. A., Rea, M. A., Foye, P. E., Racke, M., Slone, A. L., Siegel, B. W., Danielson, P. A., Sutcliffe, J. G., and Erlander, M. G. 1993. A novel adenylyl cyclase-activating serotonin receptor (5-HT7 implicated in the regulation of mammalian circadian rhythms. Neuron 11:449–458.

    Google Scholar 

  49. Plassat, J. L., Amlaiky, N., and Hen, R. 1993. Molecular cloning of a mammalian serotonin receptor that activates adenylate cyclase. Mol. Pharmacol. 44:229–236.

    Google Scholar 

  50. Tsou, A. P., Kosaka, A., Bach, C., Zuppan, P., Yee, C., Tom, L., Alvarez, R., Ramsey, S., Bonhaus, D. W., Stefanich, E., Jakeman, L., Eglen, R. M., and Chan, H. W. 1994. Cloning and expression of a 5-hydroxytryptamine(7) receptor positively coupled to adenylyl cyclase. J. Neurochem. 63:456–464.

    Google Scholar 

  51. Harsing, L. G., Jr., Bagdy, E., Kiraly, I., Csillik-Perczel, V., and Sebestyen, L. 2000. L-deprenyl desensitizes 5-HT1B but not 5-HT1A serotonin-release-mediating autoreceptors in the raphe nuclei of the rat. Pages 107–129, in Magyar, K., and Vizi, E. S. (ed), Milestones in monoamine oxidase research: discovery of (−)-deprenyl, Medicina Publishing House Co., Budapest.

    Google Scholar 

  52. Fletcher, A., Forster, E. A., Bill, D. J., Brown, G., Cliffe, I. A., Hartley, J. E., Jones, D. E., McLenachan, A., Stanhope, K. J., Critchley, D. J. P., Childs, K. J., Middlefell, V. C., Lanfumey, L., Corradetti, R., Laporte, A., Gozlan, H., Hamon, M., and Dourish, C. T. 1996. Electrophysiological, biochemical, neurohormonal and behavioural studies with WAY-100635, a potent, selective and silent 5-HT1A receptor antagonist. Behav. Brain Res. 73:337–353.

    Google Scholar 

  53. Thomas, R., Middlemniss, D. N., Taylor, S. G., Nelson, P., and Brown, A. M. 1999. 5-CT stimulation of adenylyl cyclase activity in guinea-pig hippocampus: evidence for involvement of 5-HT7 and 5-HT1A receptors. Br. J. Pharmacol. 128:158–164.

    Google Scholar 

  54. Thomas, D. R., Atkinson, P. J., Ho, M., Bromidge, S. M., Lowell, P. J., Villani, A. J., Hagan, J. J., Middlemniss, D. N., and Price, G. W. 2000. [3H]-SB-269970—a selective antagonist radioligand for 5-HT7 receptors, Br. J. Pharmacol. 130:409–417.

    Google Scholar 

  55. Price, G. W., Burton, M. J., Collin, L. J., Duckworth, M., Gaster, L., Gothert, M., Jones, B. J., Roberts, C., Watson, J. M., and Middlemniss, D. N. 1997. SB-216641 and BRL-15572-compounds to pharmacologically discriminate h5-HT1B and h5-HT1D receptors. Naunyn-Schmiedebergs Arch. Pharmacol. 356:312–320.

    Google Scholar 

  56. Schlicker, E., Fink, K., Moldering, G. J., Prince, G. W., Duckworth, M., Gaster, L., Middlemniss, D. N., Zentner, J., Likungu, J., and Gothert, M. 1997. Effects of selective h5-HT1B (SB-216641) and h5-HT1D (BRL-15572) receptor ligands on guinea-pig and human auto-and heteroreceptors. Naunyn-Schmiedebergs Arch. Pharmacol. 356:321–327.

    Google Scholar 

  57. Bonaventure, P., Nepomuceno, D., Kwok, A., Chai, W., Langlois, X., Hen, R., Stark, K., Carruthers, N., and Lovenberg, T. W. 2002. Reconsideration of 5-hydroxytryptamine (5-HT7) receptor distribution using [3H]5-carboxamidotryptamine and [3H]8-hydroxy-2-(di-n-propylamino)teraline: analysis in brain of 5-HT1A knockout and 5-HT1A/1B double-knockout mice. J. Pharm. Exp. Ther. 302:240–248.

    Google Scholar 

  58. Starley, S. J. and Skingle, M. 1994. 5-HT1D as well as 5-HT1A autoreceptors modulate 5-HT release in the guinea-pig dorsal raphe nucleus. Neuropharmacology 33:393–402.

    Google Scholar 

  59. Roberts, C., Watson, J., Burton, M., Price, G. W., and Jones, B. J. 1996. Functional characterization of the 5-HT terminal autoreceptor in the guinea-pig brain cortex. Br. J. Pharmacol. 117:384–388.

    Google Scholar 

  60. Boyland, P. S., Eastwood, S., Ekkis, C., Bergsma, D., Jones, B. J., Gloge, S., Upton, N., Middlemniss, D. N. 1996. High specific activity [3H]5-CT binding: correlation of guinea-pig cortex with human cloned 5-HT7 receptors. Br. J. Pharmacol. 117:132P.

    Google Scholar 

  61. Stowe, R. L. and Barnes, N. M. 1998. Selective labelling of 5-HT7 recognition sites in rat brain using [3H]-5-carboxamidotryptamine. Neuropharmacology 37:1611–16129.

    Google Scholar 

  62. Waeber, C. and Moskowitz, M. A. 1995. Autoradiographic visualisation of [3H]-5-carboxamidotryptamine binding sites in guinea-pig and rat brain. Eur. J. Pharmacol. 283:31–46.

    Google Scholar 

  63. Duncan, M. J., Temel, S., and Jennes, L. 2001. Localization of serotonin 5-HT7-receptor immunoreactivity in the rat brain. Soc. Neurosci. Abstr. 27:380.18.

    Google Scholar 

  64. Hajos, M., Richards, C. D., Szekely, A. D., and Sharp, T. 1998. An electrophysiological and neuroanatomical study of the medial prefrontal cortical projection to the midbrain raphe nuclei in the rat. Neuroscience 87:95–108.

    Google Scholar 

  65. Tao, R. and Auerbach, S. B. 2002. GABAergic and glutamatergic afferents in the dorsal raphe nucleus mediate morphine-induced increases in serotonin efflux in the rat central nervous system. J. Pharm. Exp. Ther. 303:704–710.

    Google Scholar 

  66. Bagdy, E., Kiraly, I., and Harsing, L. G., Jr. 2000. Reciprocal innervation between serotonergic and GABAergic neurons in raphe nuclei of the rat. Neurochem. Res. 11:1465–1473.

    Google Scholar 

  67. O'Hearn, E. and Molliver, M. E. 1984. Origination of raphe-cortical projections in the rat: a quantitative study. Brain Res. Bull. 13:709–726.

    Google Scholar 

  68. Wang, R. Y. and Aghajanian, G. K. 1977. Physiological evidence for habenula as major link between forebrain and midbrain raphe. Science 197:89–91.

    Google Scholar 

  69. Harsing, L. G., Jr. and Juranyi, Zs. 2004. Evidence for a reciprocal serotonergic-glutamatergic interaction in the raphe nuclei: involvement of 5-HT7 receptors. Proc. Aust. Neurosci Soc (ANS), Vol. 15, Abstr. 120, ed.: P. Martin, Manning Printers.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laszlo G. Harsing Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harsing, L.G., Prauda, I., Barkoczy, J. et al. A 5-HT7 Heteroreceptor-Mediated Inhibition of [3H]Serotonin Release in Raphe Nuclei Slices of the Rat: Evidence for a Serotonergic–Glutamatergic Interaction. Neurochem Res 29, 1487–1497 (2004). https://doi.org/10.1023/B:NERE.0000029560.14262.39

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000029560.14262.39

Navigation