Skip to main content
Log in

Striatal Damage and Oxidative Stress Induced by the Mitochondrial Toxin Malonate Are Reduced in Clorgyline-Treated Rats and MAO-A Deficient Mice

Neurochemical Research Aims and scope Submit manuscript

Abstract

Intrastriatal administration of the succinate dehydrogenase (SDH) inhibitor malonate produces neuronal injury by a “secondary excitotoxic” mechanism involving the generation of reactive oxygen species (ROS). Recent evidence indicates dopamine may contribute to malonate-induced striatal neurodegeneration; infusion of malonate causes a pronounced increase in extracellular dopamine and dopamine deafferentation attenuates malonate toxicity. Inhibition of the catabolic enzyme monoamine oxidase (MAO) also attenuates striatal lesions induced by malonate. In addition to forming 3,4-dihydroxyphenylacetic acid, metabolism of dopamine by MAO generates H2O2, suggesting that dopamine metabolism may be a source of ROS in malonate toxicity. There are two isoforms of MAO, MAO-A and MAO-B. In this study, we have investigated the role of each isozyme in malonate-induced striatal injury using both pharmacological and genetic approaches. In rats treated with either of the specific MAO-A or -B inhibitors, clorgyline or deprenyl, respectively, malonate lesion volumes were reduced by 30% compared to controls. In knock-out mice lacking the MAO-A isoform, malonate-induced lesions were reduced by 50% and protein carbonyls, an index ROS formation, were reduced by 11%, compared to wild-type animals. In contrast, mice deficient in MAO-B showed highly variable susceptibility to malonate toxicity precluding us from determining the precise role of MAO-B in this form of brain damage. These findings indicate that normal levels of MAO-A participate in expression of malonate toxicity by a mechanism involving oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

references

  1. Beal, M. F., Brouillet, E., Jenkins, B., Henshaw, R., Rosen, B., and Hyman, B. T. 1993. Age-dependent striatal excitotoxic lesions produced by the endogenous mitochondrial inhibitor malonate. J. Neurochem. 61:1147–1150.

    Google Scholar 

  2. Greene, J. G., Porter, R. H., Eller, R. V., and Greenamyre, J. T. 1993. Inhibition of succinate dehydrogenase by malonic acid produces an “excitotoxic” lesion in rat striatum. J. Neurochem. 61:1151–115.

    Google Scholar 

  3. Albin, R. L., and Greenamyre, J. T. 1992. Alternative excitotoxic hypotheses. Neurology 42:733–738.

    Google Scholar 

  4. Beal, M. F. 1998. Mitochondrial dysfunction in neurodegenerative diseases. Biochim. Biophys. Acta 1366:211–223.

    Google Scholar 

  5. McLaughlin, B. A., Nelson, D., Erecinska, M., and Chesselet, M. F. 1998. Toxicity of dopamine to striatal neurons in vitro and potentiation of cell death by a mitochondrial inhibitor J. Neurochem. 70:2406–2415.

    Google Scholar 

  6. Maragos, W. F., Jakel, R. J., Pang, Z., and Geddes, J. W. 1998. 6-Hydroxydopamine injections into the nigrostriatal pathway attenuate striatal malonate and 3-nitropropionic acid lesions. Exp. Neurol. 154:637–644.

    Google Scholar 

  7. Meldrum, A., Dunnett, S. B., and Everitt, B. J. 2001. Role of corticostriatal and nigrostriatal inputs in malonate-induced striatal toxicity. Neuroreport 12:89–93.

    Google Scholar 

  8. Reynolds, D. S., Carter, R. J., and Morton, A. J. 1998. Dopamine modulates the susceptibility of striatal neurons to 3-nitropropionic acid in the rat model of Huntington's disease. J. Neurosci. 18:10116–10127.

    Google Scholar 

  9. Ferger, B., Eberhardt, O., Teismann, P., de Groote, C., and Schulz, J. B. 1999. Malonate-induced generation of reactive oxygen species in rat striatum depends on dopamine release but not on NMDA receptor activation. J. Neurochem. 73:1329–1332.

    Google Scholar 

  10. Moy, L. Y., Zeevalk, G. D., and Sonsalla, P. K. 2000. Role for dopamine in malonate-induced damage in vivo in striatum and in vitro in mesencephalic cultures. J. Neurochem. 74:1656–1665.

    Google Scholar 

  11. Schoepp, D. D., and Azzaro, A. J. 1981. Specificity of endogenous substrates for types A and B monoamine oxidase in rat striatum. J. Neurochem. 36:2025–2031.

    Google Scholar 

  12. Maragos, W. F., Tillman, P. A., Chesnut, M. D., and Jakel, R. J. 1999. Clorgyline and deprenyl attenuate striatal malonate and 3-nitropropionic acid lesions. Brain Res. 834:168–172.

    Google Scholar 

  13. Cases, O., Seif, I., Grimsby, J., Gaspar, P., Chen, K., Pournin, S., Muller, U., Aguet, M., Babinet, C., Shih, J. C., and De Maeyer, E. 1995. Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 268:1763–1766.

    Google Scholar 

  14. Grimsby, J., Toth, M., Chen, K., Kumazwa, T., Klaidman, L., Adams, J. D., Karoum, F., Gal, J. and Shih, J. C. 1997. Increased stress response and phenlethylamine in MAOB-deficient mice. Nat. Genet. 17:206–210.

    Google Scholar 

  15. Student, A. K., and Edwards, D. J. 1977. Subcellular localization of types A and B monoamine oxidase in rat brain. Biochem. Pharmacol. 26:2337–2342.

    Google Scholar 

  16. Schauwecker, P. E., and Steward, O. 1997. Genetic determinants of susceptibility to excitotoxic cell death: Implications for gene targeting approaches. Proc. Natl. Acad. Sci. USA 94:4103–4108.

    Google Scholar 

  17. Levine, R. L., Williams, J. A., Stadtman, E. R., and Shacter, E. 1994. Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol. 233:346–357.

    Google Scholar 

  18. Jakel, R. J., and Maragos, W. F. 2000. Neuronal cell death in Huntington's disease: A potential role for dopamine. Trends Neurosci. 23:239–245.

    Google Scholar 

  19. Xia, X. G., Schmidt, N., Teismann, P., Ferger, B., and Schulz, J. B. 2001. Dopamine mediates striatal malonate toxicity via dopamine transporter-dependent generation of reactive oxygen species and D2 but not D1 receptor activation. J. Neurochem. 79:63–70.

    Google Scholar 

  20. Kato, T., Dong, B., Ishii, K., and Kinemuchi, H., 1986 Brain dialysis: In vivo metabolism of dopamine and serotonin by monoamine oxidase A but not B in the striatum of unrestrained rats. J. Neurochem. 46:1277–1282.

    Google Scholar 

  21. Butcher, S. P., Fairbrother, I. S., Kelly, J. S., and Arbuthnott, G. W. 1990. Effects of selective monoamine oxidase inhibitors on the in vivo release and metabolism of dopamine in the rat striatum. J. Neurochem. 55:981–988.

    Google Scholar 

  22. Wachtel, S. R., and Abercrombie, E. D. 1994. L-3,4-Dihydroxyphenylalanine-induced dopamine release in the striatum of intact and 6-hydroxydopamine-treated rats: Differential effects of monoamine oxidase A and B inhibitors. J. Neurochem. 63:108–117.

    Google Scholar 

  23. Finberg, J. P., Wang, J., Goldstein, D. S., Kopin, I. J., and Bankiewicz, K. S. 1995. Influence of selective inhibition of monoamine oxidase A or B on striatal metabolism of L-dopa in hemiparkinsonian rats. J. Neurochem. 65:1213–1220.

    Google Scholar 

  24. Fornai, F., Chen, K., Giorgi, F. S., Gesi, M., Alessandri, M. G. and Shih, J. C. 1999. Striatal dopamine metabolism in monoamine oxidase B-deficient mice: A brain dialysis study. J. Neurochem. 73:2434–2440.

    Google Scholar 

  25. Ebadi, M., Sharma, S., Shavali, S., and El Refaey, H. 2002. Neuroprotective actions of selegiline. J. Neurosci. Res. 67:285–289.

    Google Scholar 

  26. Magyar, K., and Haberle, D. 1999. Neuroprotective and neuronal rescue effects of selegiline: Review. Neurobiology 7:175–190.

    Google Scholar 

  27. Ouary, S., Bizat, N., Altairac, S., Menetrat, H., Mittoux, V., Conde, F., Hantraye, P., and Brouillet, E. 2000. Major strain differences in response to chronic systemic administration of the mitochondrial toxin 3-nitropropionic acid in rats: Implications for neuroprotection studies. Neuroscience 97:521–530.

    Google Scholar 

  28. Hauptmann, N., Grimsby, J., Shih, J. C., and Cadenas, E. 1996. The metabolism of tyramine by monoamine oxidase A/B causes oxidative damage to mitochondrial DNA. Arch. Biochem. Biophys. 335:295–304.

    Google Scholar 

  29. Lakshmana, M. K., Rao, B. S., Dhingra, N. K., Ravikumar, R., Govindaiah, Sudha, S., Meti, B. L., and Raju, T. R. 1998. Role of monoamine oxidase type A and B on the dopamine metabolism in discrete regions of the primate brain. Neurochem. Res. 23:1031–1037.

    Google Scholar 

  30. Shih, J. C., Chen, K., and Ridd, M. J. 1999. Monoamine oxidase: From genes to behavior. Ann. Rev. Neurosci. 22:197–217.

    Google Scholar 

  31. Gao, H. M., Jiang, J., Wilson, B., Zhang, W., Hong, J. S. and Liu, B. 2002. Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: Relevance to Parkinson's disease. J. Neurochem. 81:1285–1297.

    Google Scholar 

  32. Cohen, G., and Kesler, N. 1999. Monoamine oxidase and mitochondrial respiration J. Neurochem. 73:2310–2315.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William F. Maragos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maragos, W.F., Young, K.L., Altman, C.S. et al. Striatal Damage and Oxidative Stress Induced by the Mitochondrial Toxin Malonate Are Reduced in Clorgyline-Treated Rats and MAO-A Deficient Mice. Neurochem Res 29, 741–746 (2004). https://doi.org/10.1023/B:NERE.0000018845.82808.45

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000018845.82808.45

Navigation