Skip to main content
Log in

Oral Administration of Rapamycin and Cyclosporine Differentially Alter Intestinal Function in Rabbits

  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

The immunosuppressive drugs rapamycin (Rap) and cyclosporine A (CsA) are used clinically to modify or abolish immune-mediated functions. This study examined the effect of orally administered regimens of Rap, CsA, and a combination of Rap/CsA on intestinal function in male New Zealand white rabbits. Animals received oral doses of CsA (15 mg/kg/body weight/day), low-dose (LD) and high-dose (HD) Rap (0.25 or 1 mg/kg/body wt/day, respectively), or Rap/CsA (0.25 and 5 mg/kg/body wt/day, or 0.5 and 5 mg/kg/body wt/day, respectively) for 20 days. We measured in vitro uptake of nutrients and permeability, and morphometric measurements in the jejunum and ileum were made. Animals receiving HD-Rap or HD-Rap/CsA had decreased food intake, body weight, and intestinal weight, when compared with LD-Rap, LD-Rap/CsA, CsA, or controls. The maximal transport rate (Vmax) for the active jejunal uptake of D-glucose was increased in HD-Rap and CsA, but not in the HD-Rap/CsA-treated animals. The jejunal Vmax of D-glucose in the LD-Rap- or -Rap/CsA-treated animals was no different from controls. In the HD-Rap- and HD-Rap/ CsA-treated animals, jejunal rates of uptake of stearic, linoleic, and linolenic acids were reduced when compared with controls. Jejunal and ileal permeability (as assessed by the passive uptake of L-glucose, tissue conductance, and mucosal-to-serosal flux of [3H]inulin) was increased in animals treated with HD-Rap or HD-Rap/CsA, when compared with CsA or controls. These parameters of permeability were no different at lower doses of Rap or Rap/CsA. The jejunal and ileal villous surface area was increased in CsA, but decreased in HD-Rap or HD-Rap/CsA animals. Thus, HD-Rap given alone or in combination with CsA reduced body weight gain, in part due to reduced food intake and malabsorption of lipids, which was due at least in part to reduced intestinal surface area. The relevance of these findings to patients undergoing chronic immunosuppressive drug therapy needs to be established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Ottaway CA: Neuroimmunomodulation in the intestinal mucosa. Gastroenterol Clin North Am 20:511- 515, 1991

    PubMed  Google Scholar 

  2. Perdue MH, McKay DM: Integrative immunophysiology in the intestinal mucosa. Am J Physiol 267:G151- G165, 1994

    Google Scholar 

  3. Kahan BD: Cyclosporine. N Engl J Med 321:1725- 1738, 1989

    PubMed  Google Scholar 

  4. Thomson AW, Starzl TE: New Immunosuppressive Drugs: Mechanistic insights and potential therapeutic advances. Immunol Rev 136:71- 98, 1993

    PubMed  Google Scholar 

  5. Seghal SN: Rapamune (sirolumus, rapamycin): An overview and mechanisms of action. Ther Drug Monit 17:660-665, 1995

    PubMed  Google Scholar 

  6. Chen H, Wu J, Luo H, Daloze P: Synergistic e ffect of rapamycin and cyclosporine in pancre aticoduodenal transplantation in the rat. Transplant Proc 24:892-893, 1992

    PubMed  Google Scholar 

  7. Elitsur Y, Liu X, Dosescu J, Moshier JA: FK-506 and cyclosporine A (CsA) immunomodulation of the human gut mucosal immune system. Dig Dis Sci 40:1934-1940, 1995

    PubMed  Google Scholar 

  8. Sartor RB: Cytokines in intestinal inflammation: Pathophysiological and cytokine considerations. Gastroenterology 106:533- 539, 1994

    PubMed  Google Scholar 

  9. McKay DM, Perdue MH: Intestinal epithelial function: The case for immunophysiological regulation. Dig Dis Sci 38:1377- 1383, 1993

    PubMed  Google Scholar 

  10. Taub DD, Oppenheim JJ: Chemokines, inflammation, and the immune system. Ther Immunol 1:229-246, 1994

    PubMed  Google Scholar 

  11. Madara JL, Stafford J: Interferon-γ directly affects barrier function of cultured intestinal epithelia. J Clin Invest 83:724- 727, 1989

    PubMed  Google Scholar 

  12. Fryer J, Yatscoff RW, Pascoe EA, Thliveris J: Relationship of blood concentrations of rapamycin and cyclosporine to immunosuppression of allograft rejection in a rabbit heterotopic heart transplant model. Transplantation 55:340-345, 1993

    PubMed  Google Scholar 

  13. Thliveris JA, Yatscoff RW, Mihatsch MJ: Chronic cyclosporine nephrotoxicity: A rabbit model. Transplantation 57:774-776, 1994

    PubMed  Google Scholar 

  14. Dias VC, Madsen KL, Doring K, Keelan M, Yatscoff RW, Thomson ABR: Oral immunosuppressants modify nutrient uptake in normal rabbits. Transplantation58:1241-1246, 1994

    PubMed  Google Scholar 

  15. Yatscoff RW, Faraci C, Bolingbroke P: Measureme nt of rapamycin in whole blood using reverse-phase liquid chromatography. Ther Drug Monit 14:138-141, 1992

    PubMed  Google Scholar 

  16. Copeland KR, Yatscoff RW: Use of monoclonal antibody for the therapeutic monitoring of cyclosporine in plasma and whole blood. Ther Drug Monit 10:453-458, 1988

    PubMed  Google Scholar 

  17. Keelan M, Walker K, Thomson ABR: Intestinal morphology, marker enzymes and lipid content of brush border membrane s from rabbit jejunum and ileum: Effect of aging. Mech Aging Dev 31:49-68, 1985

    PubMed  Google Scholar 

  18. Thomson ABR: Influence of site and unstirred layers on the rate of uptake of cholesterol and fatty acids into rabbit intestine. J Lipid Res 21:1097-1107, 1980

    PubMed  Google Scholar 

  19. Westergaard H, Dietschy JM: The mechanism whereby bile acid micelle s increase the rate of fatty acid and cholesterol uptake into intestinal mucosal cell. J Clin Invest 58:97-108, 1976

    PubMed  Google Scholar 

  20. Lukie BE, Westergaard H, Dietschy JM: Validation of a chamber that allows measurement of body tissue uptake rates and unstirred layer thickness in the intestine. Gastroenterology 67:652- 661, 1974

    PubMed  Google Scholar 

  21. Fedorak RN, Chang EB, Madara JL, Field M: Intestinal adaptation to diabetes: Altered Na-dependent nutrient absorption in streptozocin-treated chronically diabetic rats. J Clin Invest 79:1571-1578, 1987

    PubMed  Google Scholar 

  22. Clarkson TW, Toole SR: Measurement of short-circuit current and ion transport across the ileum. Am J Physiol 206:658-668, 1964

    Google Scholar 

  23. Ferraris RP, Villenas SA, Hirayama BA, Diamond J: Effect of diet on glucose transporter site density along the intestinal crypt-villous axis. Am J Physiol 262:G1060-G1068, 1992

    PubMed  Google Scholar 

  24. Yanchar NL, Fedorak RN, Kneteman NM, Sigalet DL: Nutritional and Intestinal effects of the novel immunosuppressive agents: Deoxyspergualin, rapamycin, and mycophenolate mofetil: Clin Biochem 29:363- 369, 1996

    PubMed  Google Scholar 

  25. Whiting PH, Woo J, Adam BJ, Hasan NU, Davidson RJL, Thomson AW: Toxicity of rapamycin: A comparative and combination study with cyclosporine at immunotherapeutic dosages in the rat. Transplantation 52:203-208, 1991

    PubMed  Google Scholar 

  26. Ikeuchi M, Kida K, Goto Y, Kaino Y, Matsuda H: In vivoand in vitroeffects of cyclosporine A on glucose transport by soleus muscles of mice. Biochem Pharmacol 43:1459-1463, 1992

    PubMed  Google Scholar 

  27. Fuji Y, Kaizuka M, Hashida F, Maruo J, Sato E, Yasuda H, Kurokawa T, Ishibashi S: Insulin regulates Na+ /glucose cotransporter activity in rat small intestine. Biochim Biophys Acta 1063:90-94, 1991

    PubMed  Google Scholar 

  28. Burant CF, Fink S, DePaoli AM, Chen J, Lee WS, Heidiger MA, Buse JB, Chang EB: Small intestine hexose transport in experimental diabetes. Increase d transporter mRNA and protein expression in enterocytes. J Clin Invest 93:578-585, 1994

    PubMed  Google Scholar 

  29. Thomson ABR, Cheesman CI, Keelan M, Fedorak RN, Clandinin MT: Crypt cell production rate; enterocyte turnover time and appearance of transport along the jejunal villus of the rat. Biochim Biophys Acta 1191:197-204, 1994

    PubMed  Google Scholar 

  30. Meddings JB, DeSouza D, Goel M, Thiesen S: Glucose transport along the crypt-villous axis of the rabbit. J Clin Invest 85:1099-1107, 1990

    PubMed  Google Scholar 

  31. Marx SO, Jayaraman T, Go LO, Marks AR: Rapamycin-FKBP inhibits cell cycle regulators of proliferation in vascular smooth muscle cells. Circ Res 76:412-417, 1995

    PubMed  Google Scholar 

  32. Ziegler K, Frimmer M, Fritzsch G, Koepsell H: Cyclosporine binding to a protein component of the renal Na( 1 )-D-glucose cotransporter. J Biol Chem 265:3270-3027, 1990

    PubMed  Google Scholar 

  33. Brockway PD, Hardin JA, Gall DG: The effect of interleukins on glucose transport in rabbit jejunum. Gastroenterology 110:A315, 1996

    Google Scholar 

  34. Podolsky DK: Regulation of intestinal epithelial proliferation: A few answers, many questions. Am J Physiol 264:G179-G186, 1993

    PubMed  Google Scholar 

  35. Francavilla A, Starzl TE, Scotti C, Carrieri G, Azzarone A, Zeng QH, Porter KA, Schreiber SL: Inhibition of liver, kidney, and intestine regeneration by rapamycin. Transplantation 53:496-497, 1993

    Google Scholar 

  36. Kahan P, Makowka L, Lai H, Eagon PK, Dindzans V, Starzl TE, van Thiel DH: Cyclosporine augments the hepatic regenerative response in rats. Dig Dis Sci 35:392-395, 1990

    PubMed  Google Scholar 

  37. Quesniaux VFJ: Immunosuppressants: Tools to investigate the physiological role of cytokines. Bioessays 15:731-739, 1993

    PubMed  Google Scholar 

  38. Cao W, Mohacsi P, Shorthouse R, Pratt R, Morris RE: Effects of rapamycin on growth-factor-stimulated vascular smooth muscle cell DNA synthesis: Inhibition of fibroblast growth factor and platelet derived growth factor action and antagonism of rapamycin by FK 506. Transplantation 59:390-395, 1995

    PubMed  Google Scholar 

  39. Madsen KL, Yanchar NL, Sigalet DL, Reigel T, Fedorak RN: FK 506 increase s perme ability in rat intestine by inhibiting mitochondrial function. Gastroenterology 109:107-114, 1995

    PubMed  Google Scholar 

  40. Bjarnason I, Macpherson A, Hollander D: Intestinal perme-ability: An overview. Gastroenterology 108:1566-1581, 1995

    PubMed  Google Scholar 

  41. Granger DK, Cromwell JW, Chen SC, Goswitz JJ, Morrow DT, Beierle FA, Seghal SN, Canafax DM, Matas AJ: Prolongation of renal allograft survival in a large animal model by oral rapamycin monotherapy. Transplantation 59:183-186, 1995

    PubMed  Google Scholar 

  42. Yakimets WJ, Lakey JR, Yatscoff RW, Katyal D, Ao Z, Finegood DT, Rajotte RV, Kneteman NML: Combination low dose rapamycin and cyclosporine prolong canine pancreatic islet allograft survival: Rapamycin efficacy is blood level related. Transplantation 56:1293-1298, 1993

    PubMed  Google Scholar 

  43. Muller EA, Kovarik JM, vanBree JB, Lison AE, Kutz K: Pharmacokinetics and tolerability of a microemulsion formulation of cyclosporine in renal allograft recipients-a concentration-controlled comparison with the commercial formulation. Transplantation 57:1178-1181, 1994

    PubMed  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dias, V.C., Madsen, K.L., Mulder, K.E. et al. Oral Administration of Rapamycin and Cyclosporine Differentially Alter Intestinal Function in Rabbits. Dig Dis Sci 43, 2227–2236 (1998). https://doi.org/10.1023/A:1026610404647

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026610404647

Navigation