Skip to main content
Log in

Comparison of a Direct and Indirect Population Pharmacodynamic Model: Application to Recombinant Human Erythropoietin in Athletes

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Basic physiologic indirect response models have been proposed to account for the pharmacodynamics of drugs that act by way of inhibition or stimulation of the production or loss of endogenous substances or mediators. In this work, these models were applied to account for the effects of recombinant human erythropoietin (rHuEpo) in man. Indeed, rHuEpo induces a delayed increase of serum soluble transferrin receptors (sTfr) and a delayed decrease in ferritin (fr) concentrations. The purpose of the present study was to compare two pharmacodynamic approaches to relate serum erythropoietin (Epo) concentrations to the effect of rHuEpo on sTfr, and fr, the “indirect effect” and the “effect compartment” models. However, due to the average lag lime of about 50 hr between the first intake of rHuEpo and the onset of the measurable effects, a delay function was incorporated into the “indirect response models” to describe the relationship between the Epo plasma concentrations and the endogenous receptors or mediators affected by the drug and responsible for the effects on sTfr and fr. There are no real differences in the descriptive features of the two models used. For these reasons, the indirect model seems more appropriate because it supplies a possible mechanistic interpretation of the physiological process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. B. Berglund and B. Ekblom. Effect of recombinant human erythropoietin treatment on blood pressure and some haematological parameters in healthy males. J. Int. Med. 229:125–130 (1991).

    Article  CAS  Google Scholar 

  2. B. Ekblom and B. Berglund. Effect of erythropoietin administration on maximal aerobic power in man. Scand. J. Med. Sci. Sports 1:88–93 (1991).

    Article  Google Scholar 

  3. A. T. Kicman and D. A. Cowan. Peptides hormones and sport: Misuse and detection. Br. Med. Bull. 48:496–517 (1992).

    CAS  PubMed  Google Scholar 

  4. M. J. Koury and M. C. Bondurant. The molecular mechanism of erythropoietin action. Eur. J. Biochem. 210:649–663 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. W. Jelkman. Biology of erythropoietin. Clin. Invest. 72:S3–S10 (1994).

    Google Scholar 

  6. R. Gareau, M. Audran, R. D. Baynes, C. H. Flowers, A. Duvallet, L. Senécal, and G. R. Brisson. Erythropoietin abuse in athletes. Nature 380:113 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. F. Bressolle, M. Audran, R. Gareau, R. D. Baynes, C. Guiolicelli, and R. Gomeni. Population pharmacodynamics for monitoring epoetin in athletes Clin. Drug. Invest. 14:233–242.

  8. A. Souillard, M. Audran, F. Bressolle, R. Gareau, A. Duvallet, and J. L. Chanal. Recombinant human erythropoietin and pharmacodynamics parameters in athletes. Interest of blood sampling for doping control. Br. J. Clin. Pharmacol. 42:355–360 (1996).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. L. B. Sheiner, D. R. Stanski, S. Vozeh, R. D. Miller, and J. Ham. Simultaneous modelling of pharmacokinetics and pharmacodynamics: Application to d-tubocurarine. Clin. Pharmacol. Ther. 25:358–371 (1979).

    CAS  PubMed  Google Scholar 

  10. W. J. Jusko and H. C. Ko. Physiologic indirect response models characterize diverse types of pharmacodynamic effects. Clin. Pharmacol. Ther. 56:406–419 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. N. L. Dayneka, V. Garg, and W. J. Jusko. Comparison of four basic models of indirect pharmacodynamic responses. J. Pharmacokin. Biopharm. 21:457–478 (1993).

    Article  CAS  Google Scholar 

  12. D. V. Verotta and L. B. Sheiner. A general conceptual model for non-steady state pharmacokinetic/pharmacodynamic data. J. Pharmacokin Biopharm. 23:1–4 (1995).

    Article  CAS  Google Scholar 

  13. W. J. Jusko, H. C. Ko, and W. F. Ebling. Convergence of direct and indirect pharmacodynamic response models. J. Pharmacokin. Biopharm. 23:5–10 (1995).

    Article  CAS  Google Scholar 

  14. L. Aarons. The estimation of population pharmacokinetic parameters using an EM algorithm. Comput. Meth. Prog. Biomed. 41:9–16 (1993).

    Article  CAS  Google Scholar 

  15. EM-fit computer program, version 1.0, Bestfit, Luxembourg, 1996.

  16. R. R. Sokal and J. R. N. Rohlf. Biometry, W. H. Freeman, San Francisco, 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bressolle, F., Audran, M., Gareau, R. et al. Comparison of a Direct and Indirect Population Pharmacodynamic Model: Application to Recombinant Human Erythropoietin in Athletes. J Pharmacokinet Pharmacodyn 25, 263–275 (1997). https://doi.org/10.1023/A:1025737024403

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025737024403

Navigation