Skip to main content
Log in

Short-Term Selective Breeding as a Tool for QTL Mapping: Ethanol Preference Drinking in Mice

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Short-term selective breeding starting from an F2 intercross of two inbred strains is a largely unexploited but potentially useful tool for quantitative trait locus (QTL) mapping. The selection lines can also serve as a valuable confirmation test of recornbinant inbred (RI) QTL results when the same two progenitor strains are used. Starting from an F2 from a C57BL/6J (B6) × DBA/2J (D2) cross (B6D2F2), this approach was used in a population of ~72 mice per generation bidirectionally selected for two-bottle choice 10% ethanol (alcohol) preference for four generations. The high-preference line diverged significantly from the low line in the first generation with a realized heritabittty of .32. By generation 4, the preference ratios in the high line were double those seen in the low line. Regions of the genome previously implicated by BXD RI QTL analysis as containing QTLs were searched using microsatellite markers. The test for the presence of QTLs was based on the divergence of marker allele frequencies in the two oppositely selected lines significantly exceeding that expected from random (genetic) drift and allele frequency estimation error. Combining the BXD and two-way selection line results, the most probable QTL was found on chromosome 3 (near the AdhI locus; LOD ~2.9), other probable QTLs were found with LOD 2.4–2.6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Belknap, J. K., Machines, J. W., and McCleam, G. E. (1972). Ethanol-induced sleep time as a function of hepatic enzyme activities in mice. Physiol. Behav.9:453-457.

    Google Scholar 

  • Belknap, J. K., Crabbe, J. C., and Young, E. R. (1993). Voluntary consumption of ethanol in 15 inbred mouse strains. Psychopharmacology112:503-510.

    Google Scholar 

  • Belknap, J. K., Mogil, J. S., Helms, M. L., Richards, S. P., O'Toole, L. A., Bergeson, S. E., and Buck, K. J. (1995). Localization to chromosome 10 of a locus influencing morphine-induced analgesia in crosses derived from C57BL/'6 and DBA/2 mice. Life Sci. (Pharmacol. Lett.)57:PL117-PL124.

    Google Scholar 

  • Belknap, J. K., Mitchell, S. R., O'Toole, L. A., Helms, M. L., and Crabbe, J. C. (1996). Type I and Type II error rates for quantitative trait loci (QTL) mapping studies using recombinant inbred mouse strains Behav. Genet.26:149-160.

    Google Scholar 

  • Broadhurst, P. L. (1978). Drugs and the Inheritance of Behavior,Plenum, New York, pp. 131-149.

    Google Scholar 

  • Crabbe, J. C., Phillips, T. J., Kosobud, A., and Belknap, J. K. (1990). Estimation of genetic correlation. Interpretation of experiments using selectively bred and inbred animals. Alcohol. Clin. Exp. Res.14:141-151.

    Google Scholar 

  • Crabbe, J. C., Belknap, J. K., and Buck, K. J. (1994). Genetic animal models of alcohol and drug abuse. Science264: 1715-1723.

    Google Scholar 

  • Darvasi, A,, and Soller, M. (1995). Advanced intercross lines, an experimental population for fine genetic mapping. Genetics141:199-1207.

    Google Scholar 

  • DeFries, J. C., and Hegmann, J. P. (1970). Genetic analysis of open-field behavior. In Lindzey, G., and Thiessen, D. (eds.), Contributions to Behavior-Genetic Analysis: The Mouse as a Prototype, Appleton-Century-Crofts, New York, pp. 23-56.

    Google Scholar 

  • Falconer, D. S. (1989). Introditction to Quantitative Genetics,Longman, New York.

    Google Scholar 

  • Flint, J., Corley, R., DeFries, J. C., Fulker, D. W., Gray, J. A., Miller, S., and Collins, A. C. (1995). A simple genetic basis for a complex psychological trait in laboratory mice. Science 269:1432-1435.

    Google Scholar 

  • Henderson, N. D. (1989). Interpreting studies that compare high-and low-selected lines on new characters. Behav. Genet. 19:473-502.

    Google Scholar 

  • Hilbert, P., Lindpaintner, K., Beckmann, J. S., Serikawa, T., Soubrier, F., Dubay, C., Carrwright, P., De Gouyon, B., Julier, C., Takahasi, S., et al. (1991). Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats. Nature353: 521-529.

    Google Scholar 

  • Jacob, H. J., Lindpaintner, K., Lincoln, S. E., Kusumi, K., Bunker, R. K., Mao, Y.-P., Ganten, D., Dzau, V. J., and Lander, E. S. (1991). Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell67:213-224.

    Google Scholar 

  • Johnson, T. E., DeFries, J. C., and Markel, P. (1992). Mapping quantitative trait loci for behavioral traits in the mouse. Behav. Genet.22:635-653.

    Google Scholar 

  • Keightley, P. D., and Bulfleld, G. (1993). Detection of quantitative trait loci from frequency changes of marker alleles under selection. Genet. Res.62:195-203.

    Google Scholar 

  • Lander, E. S., and Botstein, D. (1989). Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics121:185-199.

    Google Scholar 

  • Lander, E. S., and Kruglyak, L. (1995). Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nature Genet. 11:241-247.

    Google Scholar 

  • Lander, E. S., and Schork, N. J. (1994). Genetic dissection of complex traits. Science265:2037-2048.

    Google Scholar 

  • Lebowitz, R. J., Soller, M., and Beckmann, J. S. (1987). Traitbased analyses for the detection of linkage between marker loci and quantitative trait loci in crosses between inbred lines. Theor. Appl. Genet.73:556-562.

    Google Scholar 

  • Manly, K. E., and Cudmore, R. (1995). Map Manager; A Programfor Genetic Mapping (v. 2.6.5), Roswell Park Cancer Institute, Buffalo, NY.

    Google Scholar 

  • Phillips, T. J,, and Crabbe, J. C. (1991). Behavioral studies of genetic differences in alcohol action. In Crabbe, J. C., and Harris, R. A. (eds.), The Genetic Basis of Alcohol and Drug Actions, Plenum, New York, pp. 25-84.

    Google Scholar 

  • Phillips, T. J., Crabbe, J. C., Metten, P., and Belknap, J. K. (1994). Localization of genes affecting alcohol drinking in mice. Alcohol. Clin. Exp. Res.18:931-941.

    Google Scholar 

  • Rodgers, D. A. (1972). Factors underlying differences in alcohol preference in inbred strains of mice. In Kissin, B., and Begleiter, H. (eds,), The Biology of Alcoholism,Plenum, New York, pp. 107-130.

  • Rodgers, D. A., and McCleara, G, E. (1962), Alcohol preference in mice. In Bliss, E. L. (ed.), Roots of Behavior,Harper, New York, pp. 68-95.

    Google Scholar 

  • Rodriguez, L. A., Plomin, R., Blizard, D. A., Jones, B. C., and McClearn, G. E. (1995). Alcohol acceptance, preference and sensitivity in mice. II. Quantitative trait loci mapping analysis using B X D recombinant inbred strains. Alcohol.Clin. Exp. Res. 19:367-373.

    Google Scholar 

  • Schlesinger, K. (1966). Genetic and biochemical correlates of alcohol preference in mice. Am. J. Psychiat.122:767-773.

    Google Scholar 

  • Shepard, J. R., Albersheim, P., and McClearn, G. E. (1968). Enzyme activities and ethanol preference in mice. Biochem. Genet.2:205-212.

    Google Scholar 

  • Shepard, J. R., Albersheim, P., and McCleam, G. E. (1970). Aldehyde dehydrogenase and ethanol preference in mice. Biol. Chem.245:2875-2882.

    Google Scholar 

  • Silver, L. M., Nadeau, J. H., and Goodfeliow, P. N. (1994). Encyclopedia of the mouse genome IV. Mammal. Genome5:S1-S295 (special issue).

    Google Scholar 

  • Sokal, R. R., and Rohlf, F. J. (1981). Biometry,Freeman, San Francisco.

    Google Scholar 

  • Taylor, B. A. (1978). Recombinant inbred strains: Use in gene mapping. In Morse, H. C. (ed.), Origins of Inbred Mice,Academic Press, New York, pp. 423-438.

    Google Scholar 

  • Thomasson, H. R., Crabb, D. W., Edenberg, H. J., and Li, T.-K. (1993). Alcohol and aldehyde dehydrogenase polymorphisms and alcoholism. Behav. Genet.23:131-136.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Belknap.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belknap, J.K., Richards, S.P., O'Toole, L.A. et al. Short-Term Selective Breeding as a Tool for QTL Mapping: Ethanol Preference Drinking in Mice. Behav Genet 27, 55–66 (1997). https://doi.org/10.1023/A:1025615409383

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025615409383

Navigation