Skip to main content
Log in

Targeted Proapoptotic LHRH-BH3 Peptide

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The purpose of this work was to construct and evaluate a novel targeted proapoptotic peptide for cancer treatment.

Methods. The peptide consisted of luteinizing hormone-releasing hormone (LHRH) as a targeting moiety specific to LHRH receptors and a synthetic BCL-2 homology 3 (BH3) domain peptide as an apoptosis inducer and a suppressor of antiapoptotic cellular defense. Anticancer activity of the peptide was evaluated on different cancer cell lines.

Results. The targeting receptor to LHRH peptide is overexpressed in several cancer cell lines but is not expressed in healthy human visceral organs. LHRH and BH3 peptides when applied separately did not demonstrate cellular toxicity. In contrast, the LHRH-BH3 peptide was toxic in several cancer cell lines. Coincubation of LHRH and LHRH-BH3 peptides significantly decreased cytotoxicity of the latter. It was found that the LHRH-BH3 peptide induced apoptosis by simultaneous inhibition of the antiapoptotic function of BCL-2 protein family and activation of caspase-dependent signaling pathway.

Conclusions. The proposed anticancer proapoptotic LHRH-BH3 peptide simultaneously affects two molecular targets: 1) extracellular cancer-specific LHRH receptors and 2) the intracellular controlling mechanisms of apoptosis. The results of this work may be used to design novel approaches for the treatment of various cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Bureau, A. Vanderplasschen, F. Jaspar, F. Minner, P. P. Pastoret, M. P. Merville, V. Bours, and P. Lekeux. Constitutive nuclear factor-kappaB activity preserves homeostasis of quiescent mature lymphocytes and granulocytes by controlling the expression of distinct Bcl-2 family proteins. Blood 99:3683–3691 (2002).

    PubMed  Google Scholar 

  2. S. W. Lowe and A. W. Lin. Apoptosis in cancer. Carcinogenesis 21:485–495 (2000).

    PubMed  Google Scholar 

  3. J. Reed. Dysregulation of apoptosis in cancer. J. Clin. Oncol. 17:2941–2953 (1999).

    PubMed  Google Scholar 

  4. L. Varriale, E. Crescenzi, V. Paba, B. M. di Celso, and G. Palumbo. Selective light-induced modulation of bcl-XL and bax expressions in indocyanine green-loaded U937 cells: effects of continuous or intermittent photo-sensitization with low IR-light using a 805-nm diode laser. J. Photochem. Photobiol. B 57:66–75 (2000).

    PubMed  Google Scholar 

  5. A. Gross, J. M. McDonnell, and S. Korsmeyer. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13:1899–1911 (1999).

    PubMed  Google Scholar 

  6. R. J. Lutz. Role of the BH3 (BCL-2 homology 3) domain in the regulation of apoptosis and BCL-2-related proteins. Biochem. Sci. Trans. 28:51–56 (2000).

    Google Scholar 

  7. R. I. Pakunlu, T. J. Cook, and T. Minko. Simultaneous modulation of multidrug resistance and antiapoptotic cellular defense by MDR1 and BCL-2 targeted antisense oligonucleotides enhances the anticancer efficacy of doxorubicin. Pharm. Res. 20:351–359 (2003).

    PubMed  Google Scholar 

  8. T. Minko, S. S. Dharap, and A. T. Fabbricatore. Enhancing the efficacy of chemotherapeutic drugs by the suppression of antiapoptotic cellular defense. Cancer Detect. Prev. in press

  9. E. Holinger, T. Chittenden, and R. J. Lutz. Bak BH3 peptides antagonize BCL-XL functions and induce apoptosis through cytochrome c-independent activation of caspases. J. Biol. Chem. 274:13298–13304 (1999).

    PubMed  Google Scholar 

  10. L. Vieira, P. Boya, I. Cohen, C. El Hamel, D. Haouzi, S. Druillenec, A. S. Belzacq, C. Brenner, B. Roques, and G. Kroemer. Cell permeable BH3-peptides overcome the cytoprotective effect of Bcl-2 and Bcl-X(L). Oncogene 21:1963–1977 (2002).

    PubMed  Google Scholar 

  11. T. Minko, S. S. Dharap, B. I. Pakunlu, and J. L. Colaizzi. Advanced drug delivery systems in cancer chemotherapy. Dis. Manage Clin. Outcomes 3:48–54 (2001).

    Google Scholar 

  12. C. Grundker, A. R. Gunthert, R. P. Millar, and G. Emons. Expression of gonadotropin-releasing hormone II (GnRH-II) receptor in human endometrial and ovarian cancer cells and effects of GnRH-II on tumor cell proliferation. J. Clin. Endocrinol. Metab. 87:1427–1430 (2002).

    PubMed  Google Scholar 

  13. P. Volker, C. Grundker, O. Schmidt, K. D. Schulz, and G. Emons. Expression of receptors for luteinizing hormone-releasing hormone in human ovarian and endometrial cancers: frequency, autoregulation, and correlation with direct antiproliferative activity of luteinizing hormone-releasing hormone analogues. Am. J. Obstet. Gynecol. 186:171–179 (2002).

    PubMed  Google Scholar 

  14. T. Minko, P. Kopeckova, V. Pozharov, and J. Kopecek. HPMA copolymer bound adriamycin overcomes MDR1 gene encoded resistance in a human ovarian carcinoma cell line. J. Control. Release 54:223–233 (1998).

    PubMed  Google Scholar 

  15. T. Minko, P. Kopeckova, and J. Kopecek. Comparison of the anticancer effect of free and HPMA copolymer-bound adriamycin in human ovarian carcinoma cells. Pharm. Res. 16:986–996 (1999).

    PubMed  Google Scholar 

  16. T. Minko, P. Kopeckova, and J. Kopecek. Preliminary evaluation of caspase-dependent apoptosis signaling pathways of free and HPMA copolymer-bound doxorubicin in human ovarian carcinoma cells. J. Control. Release 71:227–237 (2001).

    PubMed  Google Scholar 

  17. T. Minko, P. V. Paranjpe, B. Qiu, A. Lallo, R. Won, S. Stein, and P. J. Sinko. Enhancing the anticancer efficacy of camptothecin using biotinylated poly(ethyleneglycol) conjugates in sensitive and multidrug-resistant human ovarian carcinoma cells. Cancer Chemother. Pharmacol. 50:143–150 (2002).

    PubMed  Google Scholar 

  18. A. D. Schimmer, D. W. Hedley, S. Chow, N. A. Pham, A. Chakrabartty, D. Bouchard, T. W. Mak, M. R. Trus, and M. D. Minden. The BH3 domain of BAD fused to the Antennapedia peptide induces apoptosis via its alpha helical structure and independent of Bcl-2. Cell Death Differ. 8:725–733 (2001).

    PubMed  Google Scholar 

  19. M. Walsh, R. J. Lutz, T. G. Cotter, and R. O'Connor. Erythrocyte survival is promoted by plasma and suppressed by a Bak-derived BH3 peptide that interacts with membrane-associated Bcl-X(L). Blood 99:3439–3448 (2002).

    PubMed  Google Scholar 

  20. T. Minko, P. Kopeckova, and J. Kopecek. Efficacy of the chemotherapeutic action of HPMA copolymer-bound doxorubicin in a solid tumor model of ovarian carcinoma. Int. J. Cancer 86:108–117 (2000).

    PubMed  Google Scholar 

  21. G. V. Putcha, C. A. Harris, K. L. Moulder, R. M. Easton, C. B. Thompson, and E. M. Johnson Jr. Intrinsic and extrinsic pathway signaling during neuronal apoptosis: lessons from the analysis of mutant mice. J. Cell Biol. 157:441–453 (2002).

    PubMed  Google Scholar 

  22. X. M. Zhou, Y. Liu, G. Payne, R. J. Lutz, and T. Chittenden. Growth factors inactivate the cell death promoter BAD by phosphorylation of its BH3 domain on Ser155. J. Biol. Chem. 275:25046–25051 (2000).

    PubMed  Google Scholar 

  23. X. Roucou, T. Rostovtseva, S. Montessuit, J. C. Martinou, and B. Antonsson. Bid induces cytochrome c-impermeable Bax channels in liposomes. Biochem. J. 363:547–552 (2002).

    PubMed  Google Scholar 

  24. J. Chai, C. Du, J. W. Wu, S. Kyin, X. Wang, and Y. Shi. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406:855–862 (2000).

    PubMed  Google Scholar 

  25. C. Du, M. Fang, Y. Li, L. Li, and X. Wang. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42 (2000).

    PubMed  Google Scholar 

  26. M. Baum. A vision for the future? Br. J. Cancer 85(Suppl 2):15–18 (2001).

    PubMed  Google Scholar 

  27. M. Nowicki, G. Adamkiewicz, W. Bryc, and F. Kokot. The influence of luteinizing hormone-releasing hormone analog on serum leptin and body composition in women with solitary uterine myoma. Am. J. Obstet. Gynecol. 186:340–344 (2002).

    PubMed  Google Scholar 

  28. Y. Wang, H. Matsuo, O. Kurachi, and T. Maruo. Down-regulation of proliferation and up-regulation of apoptosis by gonadotropin-releasing hormone agonist in cultured uterine leiomyoma cells. Eur. J. Endocrinol. 146:447–456 (2002).

    PubMed  Google Scholar 

  29. A. Wells, J. C. Souto, J. Solava, J. Kassis, K. J. Bailey, and T. Turner. Luteinizing hormone-releasing hormone agonist limits DU-145 prostate cancer growth by attenuating epidermal growth factor receptor signaling. Clin. Cancer Res. 8:1251–1257 (2002).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara Minko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dharap, S.S., Minko, T. Targeted Proapoptotic LHRH-BH3 Peptide. Pharm Res 20, 889–896 (2003). https://doi.org/10.1023/A:1023839319950

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023839319950

Navigation