Skip to main content
Log in

Guinea Pigs as a Nontransgenic Model for APP Processing in Vitro and in Vivo

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Alzheimer's disease (AD) is characterized, amongst others, by the appearance of vascular and parenchymal β-amyloid deposits in brain. Such aggregates are mainly composed of β-amyloid peptides, which are derived by proteolytic processing of a larger amyloid precursor protein (APP). APP is highly conserved among mammalian species, but experimental studies in rodents are often hampered by the humble APP-processing in the amyloidogenic pathway and by the inability of rodent β-amyloid peptides to form higher molecular aggregates such as soluble oligomers and insoluble β-amyloid plaques. Thus, there is need for in vitro and in vivo model systems that allow identification of factors that increase amyloidogenic APP processing and accelerate β-amyloid plaque formation and testing the potency of pharmacological manipulations to ameliorate β-amyloid load in brain. Transgenic mice that overexpress human APP containing AD-associated mutations that favor the amyloidogenic pathway of APP processing represent such a model. However, mutations of the APP gene are not frequent in AD and, therefore, the mechanisms of β-amyloid plaque formation, the composition of β-amyloid plaques, and the accompanying tissue response in brain of these animals may be different from that in AD. In contrast, guinea pigs express β-amyloid peptides of the human sequence and appear to represent a more physiological model to examine the long-term effects of experimental manipulations on APP processing and β-amyloid plaque formation in vivo. Additionally, APP processing in guinea pig primary neuronal cultures has been shown to be similar to cultures of human origin. In this article we highlight the advantages and limitations of using guinea pigs as experimental models to study APP processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Selkoe, D. J. 1998. The cell biology of β-amyloid precursor protein and presenilin in Alzheimer's disease. Trends Cell Biol. 8:447–453.

    PubMed  Google Scholar 

  2. Kang, J., Lemaire, H. G., Unterbeck, A., Salbaum, J. M., Masters, C. L., Grzeschik, K. H., Multhaup, G., Beyreuther, K., and Müller Hill, B. 1987. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell surface receptor. Nature 325:733–736.

    PubMed  Google Scholar 

  3. Tanzi, R. E., Gusella, J. F., Watkins, P. C., Bruns, G. A., St. George-Hyslop, P., Van Keuren, M. L., Patterson, D., Pagan, S., Kurnit, D. M., and Neve, R. L. 1987. Amyloid β protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science 235:880–884.

    PubMed  Google Scholar 

  4. Roßner, S., Ueberham, U., Schliebs, R., Perez-Polo, J. R., and Bigl, V. 1998. The regulation of amyloid precursor protein metabolism by cholinergic mechanisms and neurotrophin receptor signaling. Progr. Neurobiol. 56:541–569.

    PubMed  Google Scholar 

  5. Haass, C., Koo, E. H., Mellon, A., Hung, A. Y., and Selkoe, D. J. 1992a. Targeting of cell-surface β-amyloid precursor protein to lysosomes: Alternative processing into amyloid-bearing fragments. Nature 357:500–503.

    PubMed  Google Scholar 

  6. Haass, C., Schlossmacher, M. G., Hung, A. Y., Vigo-Pelfrey, C., Mellon, A., Ostaszewski, B. L., Lieberburg, I., Koo, E. H., Schenk, D., Teplow, D. B., and Selkoe, D. J. 1992b Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359:322–325.

    PubMed  Google Scholar 

  7. Sisodia, S. S. 1992. β-Amyloid precursor protein cleavage by a membrane bound protease. Proc. Natl. Acad. Sci. USA 89:6075–6079.

    PubMed  Google Scholar 

  8. Weidemann, A., König, G., Bunke, D., Fischer, P., Salbaum, J. M., Masters, C., and Beyreuther, K. 1989. Identification, biogenesis, and localization of precursors of Alzheimer's disease A4 amyloid protein. Cell 57:115–126.

    PubMed  Google Scholar 

  9. Koike, H., Tomioka, S., Sorimachi, H., Saido, T. C., Maruyama, K., Okuyama, A., Fujisawa-Sehara, A., Ohno, S., Suzuki, K., and Ishiura, S. 1999. Membrane-anchored metalloprotease MDC9 has an α-secretase activity responsible for processing the amyloid precursor protein. Biochem. J. 343:371–375.

    PubMed  Google Scholar 

  10. Lammich, S., Kojro, E., Postina, R., Gilbert, S., Pfeiffer, R., Jasionowski, M., Haass, C., and Fahrenholz, F. 1999. Constitutive and regulated α-secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease. Proc. Natl. Acad. Sci. USA 96:3922–3927.

    PubMed  Google Scholar 

  11. Golde, T. E., Estus, S., Younkin, L. H., Selkoe, D. J., and Younkin, S. G. 1992. Processing of the amyloid protein precursor to potentially amyloidogenic derivatives. Science 255: 728–730.

    PubMed  Google Scholar 

  12. Seubert, P., Oltersdorf, T., Lee, M. G., Barbour, R., Blomquist, C., Davis, D. L., Bryant, K., Fritz, L. C., Galasko, D., Thal, L. J., Lieberburg, I., and Schenk, D. B. 1993. Secretion of amyloid precursor protein cleaved at the amino terminus of the amyloid peptide. Nature 361:260–263.

    PubMed  Google Scholar 

  13. Sinha, S., Anderson, J. P., Barbour, R., Basi, G. S., Caccavello, R., Davis, D., Doan, M., Dovey, H. F., Frigon, N., Hong, J., Jacobson-Croak, K., Jewett, N., Keim, P., Knops, J., Lieberburg, I., Power, M., Tan, H., Tatsuno, G., Tung, J., Schenk, D., Seubert, P., Suomensaari, S. M., Wang, S., Walker, D., John, V., et al. 1999. Purification and cloning of amyloid precursor protein β-secretase from human brain. Nature 402:537–540.

    PubMed  Google Scholar 

  14. Vassar, R., Bennett, B. D., Babu-Khan, S., Khan, S., Mendiaz, E. A., Denis, P., Teplow, D. B., Ross, S., Amarante, P., Loeloff, R., Luo, Y., Fisher, S., Fuller, J., Edenson, S., Lile, J., Jarosin-ski, M. A., Biere, A. L., Curran, E., Burgess, T., Louis, J. C., Collins, F., Treanor, J., Rogers, G., and Citron, M. 1999. β-Secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286: 735–741.

    PubMed  Google Scholar 

  15. Yan, R., Bienkowski, M. J., Shuck, M. E., Miao, H., Tory, M. C., Pauley, A. M., Brashier, J. R., Stratman, N. C., Mathews, W. R., Buhl, A. E., Carter, D. B., Tomasselli, A. G., Parodi, L. A., Heinrikson, R. L., and Gurney, M. E. 1999. Membrane-anchored aspartyl protease with Alzheimer's disease β-secretase activity. Nature 402:533–537.

    PubMed  Google Scholar 

  16. Esler, W. P., Kimberly, W. T., Ostaszewski, B. L., Diehl, T. S., Moore, C. L., Tsai, J. Y., Rahmati, T., Xia, W., Selkoe, D. J., and Wolfe, M. S. 2000. Transition-state analogue inhibitors of γ-sec-retase bind directly to presenilin-1. Nat. Cell Biol. 2:428–434.

    PubMed  Google Scholar 

  17. Li, Y. M., Xu, M., Lai, M. T., Huang, Q., Castro, J. L., DiMuzio-Mower, J., Harrison, T., Lellis, C., Nadin, A., Neduvelil, J. G., Register, R. B., Sardana, M. K., Shearman, M. S., Smith, A. L., Shi, X. P., Yin, K. C., Shafer, J. A., and Gardell, S. J. 2000. Photoactivated γ-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 405:689–694.

    PubMed  Google Scholar 

  18. Wolfe, M. S. and Haass, C. 2001. The role of presenilins in γ-secretase activity. J. Biol. Chem. 276:5413–5416.

    PubMed  Google Scholar 

  19. Blessed, G., Tomlinson, B. E., and Roth, M. 1968. The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. Br. J. Psychiatry 114:798–811.

    Google Scholar 

  20. Roth, M., Tomlinson, B. E., and Blessed, G. 1966. Correlation between scores for dementia and counts of senile plaques in cerebral grey matter of elderly subjects. Nature 209:109–110.

    PubMed  Google Scholar 

  21. Perry, E. K., Tomlinson, B. E., Blessed, G., Bergmann, K., Gibson, G. H., and Perry, R. H. 1978. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br. Med. J. 2:1457–1459.

    PubMed  Google Scholar 

  22. Cummings, B. J. and Cotman, C. W. 1995. Image-analysis of β-amyloid load in Alzheimer's disease and relation to dementia severity. Lancet 346:1524–1528.

    PubMed  Google Scholar 

  23. Bartoo, G. T., Nochlin, D., Chang, D., Kim, Y., and Sumi, S. M. 1997. The mean Aβ load in the hippocampus correlates with duration and severity of dementia in subgroups of Alzheimer's disease. J. Neuropath. Exp. Neurol. 56:531–540.

    PubMed  Google Scholar 

  24. Cummings, B. J., Head, E., Afagh, A. J., Milgram, N. W., and Cotman, C. W. 1996. β-Amyloid accumulation correlates with cognitive dysfunction in the aged canine. Neurobiol. Learning Memory 66:11–23.

    Google Scholar 

  25. Dodart, J. C., Meziane, H., Mathis, C., Bales, K. R., Paul, S. M., and Ungerer, A. 1999. Behavioral disturbances in transgenic mice overexpressing the V717F β-amyloid precursor protein. Behav. Neurosci. 113:982–990.

    PubMed  Google Scholar 

  26. Dodart, J. C., Bales, K. R., Gannon, K. S., Greene, S. J., DeMattos, R. B., Mathis, C., DeLong, C. A., Wu, S., Wu, X., Holtzman, D. M., and Paul, S. M. 2002. Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer's disease model. Nat. Neurosci. 5:452–457.

    PubMed  Google Scholar 

  27. Lue, L. F., Kuo, Y. M., Roher, A. E., Brachova, L., Shen, Y., Sue, L., Beach, T., Kurth, J. H., Rydel, R. E., and Rogers, J. 1999. Soluble amyloid β peptide concentration as a predictor of synaptic change in Alzheimer's disease. Am. J. Pathol. 155: 853–862.

    PubMed  Google Scholar 

  28. McLean, C. A., Cherny, R. A., Fraser, F. W., Fuller, S. J., Smith, M. J., Beyreuther, K., Bush, A. I., and Masters, C. L. 1999. Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann. Neurol. 46:860–866.

    PubMed  Google Scholar 

  29. Koistinaho, M., Ort, M., Cimadevilla, J. M., Vondrous, R., Cordell, B., Koistinaho, J., Bures, J., and Higgins, L. S. 2001. Specific spatial learning deficits become severe with age in β-amyloid precursor protein transgenic mice that harbor diffuse β-amyloid deposits but do not form plaques. Proc. Natl. Acad. Sci. USA 98:14675–14680.

    PubMed  Google Scholar 

  30. Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W., Anwyl, R., Wolfe, M. S., Rowan, M. J., and Selkoe, D. J. 2002. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539.

    PubMed  Google Scholar 

  31. Wang, H. W., Pasternak, J. F., Kuo, H., Ristic, H., Lambert, M. P., Chromy, B., Viola, K. L., Klein, W. L., Stine, W. B., Krafft, G. A., and Trommer, B. L. 2002. Soluble oligomers of β-amyloid (1–42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res. 924:133–140.

    PubMed  Google Scholar 

  32. Lambert, M. P., Barlow, A. K., Chromy, B. A., Edwards, C., Freed, R., Liosatos, M., Morgan, T. E., Rozovsky, I., Trommer, B., Viola, K. L., Wals, P., Zhang, C., Finch, C. E., Krafft, G. A., and Klein, W. L. 1998. Diffusible, nonfibrillar ligands derived from A1–42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 95:6448–6453.

    PubMed  Google Scholar 

  33. Auld, D. S., Kar, S., and Quirion, R. 1998. β-Amyloid peptides as direct cholinergic neuromodulators: A missing link? Trends Neurosci. 21:43–49.

    PubMed  Google Scholar 

  34. Kar, S., Seto, D., Gaudreau, P., and Quirion, R. 1996. β-Amyloid-related peptides inhibit potassium-evoked acetylcholine release from rat hippocampal slices. J. Neurosci. 16:1034–1040.

    PubMed  Google Scholar 

  35. Pedersen, W. A., Kloczewiak, M. A., and Blusztajn, J. K. 1996. Amyloid β protein reduces acetylcholine synthesis in a cell line derived from cholinergic neurons of the basal forebrain. Proc. Natl. Acad. Sci. USA 93:8068–8071.

    PubMed  Google Scholar 

  36. Hoshi, M., Takashima, A., Murayama, M., Yasutake, K., Yoshida, N., Ishiguro, K., Hoshino, T., and Imahori, K. 1997. Nontoxic amyloid β peptide (1–42) supresses acetylcholine synthesis: Possible role in cholinergic dysfunction in Alzheimer's disease. J. Biol. Chem. 272:2038–2041.

    PubMed  Google Scholar 

  37. Kelly, J. F., Furukawa, K., Barger, S. W., Rengen, M. R., Mark, R. J., Blanc, E. M., Roth, G S., and Mattson, M. P. 1996. Amyloid β peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons. Proc. Natl. Acad. Sci. USA 93:6753–6758.

    PubMed  Google Scholar 

  38. Mori, H., Takio, K., Ogawara, M., and Selkoe, D. J. 1992. Mass spectrometry of purified amyloid β protein in Alzheimer's disease. J. Biol. Chem. 267:17082–17086.

    PubMed  Google Scholar 

  39. Miller, D. L., Papayannoopoulos, I. A., Styles, J., Bobin, S. A., Lin, Y. Y., Biemann, K., and Iqbal, K. 1993. Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer's disease. Arch. Biochem. Biophys. 301:41–52.

    PubMed  Google Scholar 

  40. Seubert, P., Vigo-Pelfrey, C., Esch, F., Leal, M., Dovey, H., Davis, D., Sinha, S., Schlossmacher, M., Whaley, J., Swindlehurst, C., Mc Cormack, R., Wolfert, R., Selkoe, D., Lieberburg, I., and Schenk, D. 1992. Isolation and quantification of soluble Alzheimer's β-peptide from biological fluids. Nature 359:325–327.

    PubMed  Google Scholar 

  41. Suzuki, N., Cheung, T. T., Cai, X.-D. Odaka, A., Otvos, L., Eckman, C., Golde, T. E., and Younkin, S. G. 1994. An increased percentage of long amyloid β protein secreted by familial amyloid β protein precursor (βAPP717). Science 264: 1336–1340.

    PubMed  Google Scholar 

  42. Jarret, J. T. and Lansbury, P. T. 1993. Seeding "one-dimensional crystallization" of amyloid: A pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73:1055–1058.

    PubMed  Google Scholar 

  43. Jarret, J. T., Berger, E. P., and Lansbury, P. T. 1993. The carboxy terminus of the β amyloid protein is critical for the seeding of amyloid formation: Implications for the pathogenesis of Alzheimer's disease. Biochemistry 32:4693–4697.

    PubMed  Google Scholar 

  44. Shin, R.-W., Ogino, K., Kondo, A., Saido, T. C., Trojanowski, J. Q., Kitamoto, T., and Tateishi, J. 1997. Amyloid β-protein (Aβ) 1–40 but not Aβ1–42 contributes to the experimental formation of Alzheimer's disease amyloid fibrils in rat brain. J. Neurosci. 17:8187–8183.

    Google Scholar 

  45. De Strooper, B., Somins, M., Multhaup, G., Van Leuven F., Beyreuther, K., and Dotti, C. G. 1995. Production of intracellular amyloid-containing fragments in hippocampal neurons expressing human amyloid precursor protein and protection against amyloidogenesis by subtle amino acid substitutions in the rodent sequence. EMBO J. 14:4932–4938.

    PubMed  Google Scholar 

  46. Reaume, A. G., Howland, D. S., Trusko, S. P., Savage, M. J., Lang, D. M., Greenberg, B. D., Siman, R., and Scott, R. W. 1996. Enhanced amyloidogenic processing of the β-amyloid precursor protein in gene-targeted mice bearing the Swedish familial Alzheimer's disease mutations and a "humanized" Aβ sequence. J. Biol. Chem. 271:23380–23388.

    PubMed  Google Scholar 

  47. Dyrks, T., Dyrks, E., Masters, C., and Beyreuther, K. 1993. Amyloidogenicity of rodent and human βA4 sequences. FEBS Lett. 324:231–236.

    PubMed  Google Scholar 

  48. Otvos, L. Jr., Szendrei, G. I., Lee, V. M., and Mantsch, H. H. 1993. Human and rodent Alzheimer β-amyloid peptides acquire distinct conformations in membrane-mimicking solvents. Eur. J. Biochem. 211:249–257.

    PubMed  Google Scholar 

  49. Games, D., Adams, D., Alessandrini, R., Barbour, R., Berthelette, P., Blackwell, C., Carr, T., Clemens, J., Donaldson, T., Gillespie, F., Guido, T., Hagoplan, S., Johnson-Wood, K., Khan, K., Lee, M., Leibowitz, P., Lieberburg, I., Little, S., Masliah, E., McConlogue, L., Montoya-Zavala, M., Mucke, L., Paganini, L., Penniman, E., Power, M., Schenk, D., Seubert, P., Snyder, B., Soriano, F., Tan, H., Vitale, J., Wadsworth, S., Wolozin, B., and Zhao, J. 1995. Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373:523–527.

    PubMed  Google Scholar 

  50. Hsiao, K., Chapman, P., Nilsen, S., Eckman, C., Harigaya, Y., Younkin, S., Yang, F., and Cole, G. 1996. Correlative memory deficits, Aβ elevation and amyloid plaques in transgenic mice. Science 274:99–102.

    PubMed  Google Scholar 

  51. Kammesheidt, A., Boyce, F. M., Spanoyannis, A. F., Cummings, B. J., Ortegon, M., Cotman, C. W., Vaught, J. L., and Neve, R. L. 1992. Amyloid deposition and neuronal pathology in transgenic mice expressing the carboxyterminal fragment of the Alzheimer's amyloid precursor in the brain. Proc. Natl. Acad. Sci. USA 89:10857–10861.

    PubMed  Google Scholar 

  52. Nalbantoglu, J., Tiradosantiago, G., Lahsaini, A., Poirier, J., Goncalves, O., Verge, A., Momoli, F., Welner, S. A., Massicotte, G., Julien, J. P., and Shapiro, M. L. 1997. Impaired learning and LTP in mice expressing the carboxy-terminus of the Alzheimer amyloid precursor protein. Nature 387:500–505.

    PubMed  Google Scholar 

  53. Oster-Granite, M. L., McPhie, D. L., Greenan, J., and Neve, R. L. 1996. Age-dependent neuronal and synaptic degeneration in mice transgenic for C-terminus of the amyloid precursor protein. J. Neurosci. 16:6732–6741.

    PubMed  Google Scholar 

  54. Sturchler-Pierrat, C., Abramowski, D., Duke, M., Wiederhold, K. H., Mistl, C., Rothacher, S., Ledermann, B., Burki, K., Frey, P., Paganetti, P. A., Waridel, C., Calhoun, M. E., Jucker, M., Probst, A., Staufenbiel, M., and Sommer, B. 1997. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc. Natl. Acad. Sci. USA 94:13287–13292.

    PubMed  Google Scholar 

  55. Johnstone, E. M., Chaney, M. O., Norris, F. H., Pascual, R., and Little, S. P. 1991. Conservation of the sequence of the Alzheimer's disease amyloid peptide in dog, polar bear and five other mammals by cross-species polymerase chain reactions. Mol. Brain Res. 10:299–305.

    PubMed  Google Scholar 

  56. Beck, M., Müller, D., and Bigl, V. 1997. Amyloid precursor protein in guinea pigs: Complete cDNA sequence and alternative splicing. Biochim. Biophys. Acta 1351:17–21.

    PubMed  Google Scholar 

  57. Beck, M., Brückner, M. K., Holzer, M., Stahl, T., and Bigl, V. 1998. The use of guinea pigs (Cavia sp.) as a model to study processing of the amyloid precursor protein (APP). Eur. J. Neurosci. (Suppl. 10): Abstract 92

  58. Beck, M., Brückner, M. K., Holzer, M., Kaap, S., Pannicke, T., Arendt, T., and Bigl, V. 2000. Guinea-pig primary cell cultures provide a model to study expression and amyloidogenic processing of endogenous amyloid precursor protein. Neuroscience 95:243–254.

    PubMed  Google Scholar 

  59. Holzer, M., Brückner, M. K., Beck, M., Bigl, V., and Arendt, T. 2000. Modulation of APP processing and secretion by okadaic acid in primary guinea pig neurons. J. Neural Transm. 107:451–461.

    PubMed  Google Scholar 

  60. Sambamurti, K., Sevlever, D., Koothan, T., Refolo, L. M., Pinnix, I., Gandhi, S., Onstead, L., Younkin, L., Prada, C. M., Yager, D., Ohyagi, Y., Eckman, C. B., Rosenberry, T. L., and Younkin, S. G. 1999. Glycosylphosphatidylinositol-anchored proteins play an important role in the biogenesis of the Alzheimer's amyloid β-protein. J. Biol. Chem. 274:26810–26814.

    PubMed  Google Scholar 

  61. Clarke, N. J., Tomlinson, A. J., Ohyagi, Y., Younkin, S., and Naylor, S. 1998. Detection and quantitation of cellularly derived amyloid β peptides by immunoprecipitation-HPLC-MS. FEBS Lett. 430:419–423.

    PubMed  Google Scholar 

  62. Khorkova, O. E., Patel, K., Heroux, J., and Sahasrabudhe, S. 1998. Modulation of amyloid precursor protein processing by compounds with various mechanisms of action: Detection by liquid phase electrochemiluminescent system. J. Neurosci. Methods 82:159–166.

    PubMed  Google Scholar 

  63. Buxbaum, J. D., Gandy, S. E., Cicchetti, P., Ehrlich, M. E., Czernik, A. J., Fracasso, R. P., Ramabhadran, T. V., Unterbeck, A. J., and Greengard, P. 1990. Processing of Alzheimer β/A4 amyloid precursor protein: modulation by agents that regulate protein phosphorylation. Proc. Natl. Acad. Sci. USA 87:6003–6006.

    PubMed  Google Scholar 

  64. Buxbaum, J. D., Koo, E. H., and Greengard, P. 1993. Protein phosphorylation inhibits production of Alzheimer amyloid β/A4 peptide. Proc. Natl. Acad. Sci. USA 90:9195–9198.

    PubMed  Google Scholar 

  65. Caporaso, G. L., Gandy, S. E., Buxbaum, J. D., Ramabhadran, T. V., and Greengard, P. 1992. Protein phosphorylation regulates secretion of Alzheimer β/A4 amyloid precursor protein. Proc. Natl. Acad. Sci. USA 89:3055–3059.

    PubMed  Google Scholar 

  66. Jope, R. S. 1996. Cholinergic muscarinic receptor signaling by the phosphoinositide signal transduction system in Alzheimer's disease. Alz. Dis. Rev. 1:2–14.

    Google Scholar 

  67. Coughlan, C. M. and Breen, K. C. 2000. Factors influencing the processing and function of the amyloid β precursor protein: A potential therapeutic target in Alzheimer's disease? Pharmacol. Ther. 86:111–144.

    PubMed  Google Scholar 

  68. Roßner, S., Beck, M., Stahl, T., Mendla, K., Schliebs, R., and Bigl, V. 2000. Constitutive overexpression of protein kinase C in guinea pig brain increases α-secretory APP processing without decreasing β-amyloid generation. Eur. J. Neurosci. 12: 3191–3200.

    PubMed  Google Scholar 

  69. Roßner, S., Mendla, K, Schliebs, R., and Bigl, V. 2001. Protein kinase Cα and β1 isoforms are regulators of α-secretory proteolytic processing of amyloid precursor protein in vivo. Eur. J. Neurosci 13:1644–1648.

    PubMed  Google Scholar 

  70. Dyrks, T., Mönning, U., Beyreuther, K., and Turner, J. 1994. Amyloid precursor protein secretion and β A4 amyloid generation are not mutually exclusive. FEBS Lett. 349:210–214.

    PubMed  Google Scholar 

  71. Fuller, S. J., Storey, E., Li, Q.-X., Smith, I., Beyreuther, K., and Masters, C. 1995. Intracellular production of βA4 amyloid of Alzheimer's disease: Modulation by phosphoramidon and lack of of coupling to secretion of the amyloid precursor protein. Biochemistry 34:8091–8098.

    PubMed  Google Scholar 

  72. LeBlanc, A. C., Koutroumanis, M., and Goodyer, C. G. 1998. Protein kinase C activation increases release of secretd amyloid precursor protein without decreasing Aβ production in human primary neuron cultures. J. Neurosci. 18:2907–2913.

    PubMed  Google Scholar 

  73. Robert, S. J., Zugaza, J. L., Fischmeister, R., Gardier, A. M., and Lezoualc'h, F. 2001. The human serotonin 5-HT4 receptor regulates secretion of non-amyloidogenic precursor protein. J. Biol. Chem. 276:44881–44888.

    PubMed  Google Scholar 

  74. Stephenson, D. T. and Clemens, J. A. 1998. Metabotropic glutamate receptor activation in vivo induces intraneuronal amyloid immunoreactivity in guinea pig hippocampus. Neurochem. Int. 33:83–93.

    PubMed  Google Scholar 

  75. Beach, T. G., Kuo, Y. M., Schwab, C., Walker, D. G., and Roher, A. E. 2001. Reduction of cortical amyloid β levels in guinea pig brain after systemic administration of physostigmine. Neurosci. Lett. 310:21–24.

    PubMed  Google Scholar 

  76. Petanceska, S. S., Nagy, V., Frail, D., and Gandy, S. 2000. Ovariectomy and 17β-estradiol modulate the levels of Alzheimer's amyloid beta peptides in brain. Neurology 54:2212–2217.

    PubMed  Google Scholar 

  77. Fassbender, K., Simons, M., Bergmann, C., Stroick, M., Lutjohann, D., Keller, P., Runz, H., Kuhl, S., Bertsch, T., von Bergmann, K., Hennerici, M., Beyreuther, K., and Hartmann, T. 2001. Simvastatin strongly reduces levels of Alzheimer's disease β-amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc. Natl. Acad. Sci. USA 98:5856–5861.

    PubMed  Google Scholar 

  78. Calingasan, N. Y., Park, L. C., Gandy, S. E., and Gibson, G. E. 1998. Disturbances of the blood-brain barrier without expression of amyloid precursor protein-containing neuritic clusters or neuronal loss during late stages of thiamine deficiency in guinea pigs. Dev. Neurosci. 20:454–461.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Roßner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, M., Bigl, V. & Roßner, S. Guinea Pigs as a Nontransgenic Model for APP Processing in Vitro and in Vivo . Neurochem Res 28, 637–644 (2003). https://doi.org/10.1023/A:1022850113083

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022850113083

Navigation