Skip to main content
Log in

Comparison of the Effects of Cilostazol and Milrinone on cAMP-PDE Activity, Intracellular cAMP and Calcium in the Heart

Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

We investigated the basis for the difference in the cardiotonic effects of the PDE3 inhibitors cilostazol and milrinone in the rabbit heart. Cilostazol displayed greater selectivity than milrinone for inhibition of cAMP-PDE activity in microsomal vs cytosolic fractions from rabbit heart. This difference was due to the inhibition of significantly less cytosolic cAMP-PDE activity by cilostazol compared to milrinone. A combination of cilostazol (>15 μM) and the PDE4 selective inhibitor, rolipram (5 μM), inhibited levels of cytosolic cAMP-PDE activity similar to those inhibited by milrinone on its own. This suggested that milrinone inhibited PDE4 in addition to PDE3 activity. In isolated rabbit cardiomyocytes, milrinone (>10 μM) caused greater elevations in intracellular cAMP and calcium than cilostazol. In the presence of rolipram, however, the cAMP and calcium elevating effects of cilostazol and milrinone were similar. Therefore, in rabbit heart, partial inhibition of PDE4 by milrinone contributed to greater increases in cardiomyocyte cAMP and calcium levels than cilostazol. PDE4 activity in failing human heart was lower than in rabbit heart and there was no significant difference in the inhibition of human cytosolic cAMP-PDE by cilostazol and milrinone. Our results suggest that in normal rabbit heart inhibition of PDE4 by milrinone may partly contribute to the greater cardiotonic effect of milrinone when compared to cilostazol. However, the lower level of PDE4 activity in failing human heart suggests that factors other than inhibition of PDE4 by milrinone may contribute to differences in cardiotonic action when compared to cilostazol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Shakur Y, Holst LS, Landstrom TR, Movsesian M, Degerman E, Manganiello V. Regulation and function of the cyclic nucleotide phosphodiesterase (PDE3) gene family [In Process Citation]. Prog Nucleic Acid Res Mol Biol 2000;66:241–277.

    Google Scholar 

  2. Shipley JB, Tolman D, Hastillo A, Hess ML. Milrinone: Basic and clinical pharmacology and acute and chronic management. Am J Med Sci 1996;311(6):286–291.

    Google Scholar 

  3. Yasuda K, Sakuma M, Tanabe T. Hemodynamic effect of cilostazol on increasing peripheral blood flow in arteriosclerosis obliterans. Arzneimittelforschung 1985;35(7A):1198–1200.

    Google Scholar 

  4. Kamiya T, Sakaguchi S. Hemodynamic effects of the antithrombotic drug cilostazol in chronic arterial occlusion in the extremities. Arzneimittelforschung 1985;35(7A):1201–1203.

    Google Scholar 

  5. Ohashi S, Iwatani M, Hyakuna Y, Morioka Y. Thermographic evaluation of the hemodynamic effect of the antithrombotic drug cilostazol in peripheral arterial occlusion. Arzneimittelforschung 1985;35(7A):1203–1208.

    Google Scholar 

  6. Hiatt WR. Current and future drug therapies for claudication. Vasc Med 1997;2(3):257–262.

    Google Scholar 

  7. Dawson DL, Cutler BS, Meissner MH, Strandness DE Jr. Cilostazol has beneficial effects in treatment of intermittent claudication: Results from a multicenter, randomized, prospective, double-blind trial. Circulation 1998;98(7):678–686.

    Google Scholar 

  8. Money SR, Herd JA, Isaacsohn JL, et al. Effect of cilostazol on walking distances in patients with intermittent claudication caused by peripheral vascular disease. J Vasc Surg 1998;27(2):267–274.

    Google Scholar 

  9. Elam MB, Heckman J, Crouse JR, et al. Effect of the novel antiplatelet agent cilostazol on plasma lipoproteins in patients with intermittent claudication. Arterioscler Thromb Vasc Biol 1998;18(12):1942–1947.

    Google Scholar 

  10. Packer M, Carver JR, Rodeheffer RJ, et al. Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group [see comments]. N Engl J Med 1991;325(21):1468–1475.

    Google Scholar 

  11. The xamoterol in severe heart failure study group. Xamoterol in severe heart failure. Lancet 1990;336:1–6.

    Google Scholar 

  12. The digitalis investigation group. The effect of digoxin on mortality and morbidity in patients with heart failure. N Engl J Med 1997;336:525–533.

    Google Scholar 

  13. Cone J, Wang S, Tandon N, et al. Comparison of the effects of cilostazol and milrinone on intracellular cAMP levels and cellular function in platelets and cardiac cells. J Cardiovasc Pharmacol 1999;34(4):497–504.

    Google Scholar 

  14. Weishaar RE, Burrows SD, Kobylarz DC, Quade MM, Evans DB. Multiple molecular forms of cyclic nucleotide phosphodiesterase in cardiac and smooth muscle and in platelets. Isolation, characterization, and effects of various reference phosphodiesterase inhibitors and cardiotonic agents. Biochem Pharmacol 1986;35(5):787–800.

    Google Scholar 

  15. Weishaar RE, Kobylarz-Singer DC, Quade MM, Steffen RP, Kaplan HR. Multiple molecular forms of phosphodiesterase and the regulation of cardiac muscle contractility. J Cyclic Nucleotide Protein Phosphor Res 1986;11(7):513–527.

    Google Scholar 

  16. Weishaar RE, Kobylarz-Singer DC, Kaplan HR. Subclasses of cyclic AMP phosphodiesterase in cardiac muscle. J Mol Cell Cardiol 1987;19(10):1025–1036.

    Google Scholar 

  17. Shahid M, Nicholson CD. Comparison of cyclic nucleotide phosphodiesterase isoenzymes in rat and rabbit ventricular myocardium: Positive inotropic and phosphodiesterase inhibitory effects of Org 30029, milrinone and rolipram. Naunyn Schmiedebergs Arch Pharmacol 1990;342(6):698–705.

    Google Scholar 

  18. Han P, Zhu X, Michaeli T. Alternative splicing of the high affinity cAMP-specific phosphodiesterase (PDE7A) mRNA in human skeletal muscle and heart. J Biol Chem 1997;272(26):16152–16157.

    Google Scholar 

  19. Soderling SH, Bayuga SJ, Beavo JA. Cloning and characterization of a cAMP-specific cyclic nucleotide phosphodiesterase. Proc Natl Acad Sci USA 1998;95(15):8991–8996.

    Google Scholar 

  20. Fisher DA, Smith JF, Pillar JS, St Denis SH, Cheng JB. Isolation and characterization of PDE9A, a novel human cGMPspecific phosphodiesterase. J BiolChem1998;273(25):15559–15564.

    Google Scholar 

  21. Soderling SH, Bayuga SJ, Beavo JA. Isolation and characterization of a dual-substrate phosphodiesterase gene family: PDE10A. Proc Natl Acad Sci USA 1999;96(12):7071–7076.

    Google Scholar 

  22. Hetman JM, Soderling SH, Glavas NA, Beavo JA. Cloning and characterization of PDE7B, a cAMP-specific phosphodiesterase. Proc Natl Acad Sci USA 2000;97(1):472–476.

    Google Scholar 

  23. Verde I, Vandecasteele G, Lezoualc'h F, Fischmeister R. Characterization of the cyclic nucleotide phosphodiesterase subtypes involved in the regulation of the L-type Ca2+ current in rat ventricular myocytes. Br J Pharmacol 1999;127(1):65–74.

    Google Scholar 

  24. Kithas PA, Artman M, Thompson WJ, Strada SJ. Subcellular distribution of high-affinity type IV cyclic AMP phosphodiesterase activity in rabbit ventricular myocardium: Relations to the effects of cardiotonic drugs. Circ Res 1988;62(4):782–789.

    Google Scholar 

  25. Smith CJ, Krall J, Manganiello VC, Movsesian MA. Cytosolic and sarcoplasmic reticulum-associated low Km, cGMPinhibited cAMP phosphodiesterase in mammalian myocardium. Biochem Biophys Res Commun 1993;190(2):516–521.

    Google Scholar 

  26. Lugnier C, Keravis T, Le Bec A, Pauvert O, Proteau S, Rousseau E. Characterization of cyclic nucleotide phosphodiesterase isoforms associated to isolated cardiac nuclei. Biochim Biophys Acta 1999;1472(3):431–446.

    Google Scholar 

  27. Rapundalo ST, Solaro RJ, Kranias EG. Inotropic responses to isoproterenol and phosphodiesterase inhibitors in intact guinea pig hearts: Comparison of cyclicAMPlevels and phosphorylation of sarcoplasmic reticulum and myofibrillar proteins. Circ Res 1989;64(1):104–111.

    Google Scholar 

  28. Koss KL, Grupp IL, Kranias EG. The relative phospholamban and SERCA2 ratio: A critical determinant of myocardial contractility. Basic Res Cardiol 1997;92 Suppl 1:17–24.

    Google Scholar 

  29. Jurevicius J, Fischmeister R. cAMP compartmentation is responsible for a local activation of cardiac Ca2+ channels by beta-adrenergic agonists. Proc Natl Acad Sci USA 1996;93(1):295–299.

    Google Scholar 

  30. Tsafriri A, Chun SY, Zhang R, Hsueh AJ, Conti M. Oocyte maturation involves compartmentalization and opposing changes of cAMP levels in follicular somatic and germ cells: Studies using selective phosphodiesterase inhibitors. Dev Biol 1996;178(2):393–402.

    Google Scholar 

  31. Chini CC, Grande JP, Chini EN, Dousa TP. Compartmentalization of cAMP signaling in mesangial cells by phosphodiesterase isozymes PDE3 and PDE4. Regulation of superoxidation and mitogenesis. J Biol Chem 1997;272(15):9854–9859.

    Google Scholar 

  32. Elks ML, Manganiello VC. A role for soluble cAMP phosphodiesterases in differentiation of 3T3-L1 adipocytes. J Cell Physiol 1985;124(2):191–198.

    Google Scholar 

  33. Elks ML, Manganiello VC. Antilipolytic action of insulin: Role of cAMP phosphodiesterase activation. Endocrinology 1985;116(5):2119–2121.

    Google Scholar 

  34. Smith CJ, Huang R, Sun D, et al. Development of decompensated dilated cardiomyopathy is associated with decreased gene expression and activity of the milrinonesensitive cAMP phosphodiesterase PDE3A. Circulation 1997;96(9):3116–3123.

    Google Scholar 

  35. Kenan Y, Murata T, Shakur Y, Degerman E, Manganiello VC. Functions of the N-terminal region of cyclic nucleotide phosphodiesterase 3 (PDE 3) isoforms. J Biol Chem 2000;275(16):12331–12338.

    Google Scholar 

  36. Shakur Y, Pryde JG, Houslay MD. Engineered deletion of the unique N-terminal domain of the cyclic AMP-specific phosphodiesterase RD1 prevents plasma membrane association and the attainment of enhanced thermostability without altering its sensitivity to inhibition by rolipram. Biochem J 1993;292(Pt 3):677–686.

    Google Scholar 

  37. Thompson WJ, Appleman MM. Multiple cyclic nucleotide phosphodiesterase activities from rat brain. Biochemistry 1971;10(2):311–316.

    Google Scholar 

  38. Marchmont RJ, Houslay MD. A peripheral and an intrinsic enzyme constitute the cyclic AMP phosphodiesterase activity of rat liver plasma membranes. Biochem J 1980;187(2):381–392.

    Google Scholar 

  39. Liu Y, Gao WD, O'Rourke B, Marban E. Synergistic modulation of ATP-sensitive K+ currents by protein kinase C and adenosine. Implications for ischemic preconditioning. Circ Res 1996;78(3):443–454.

    Google Scholar 

  40. Bassani JW, Bassani RA, Bers DM. Calibration of indo-1 and resting intracellular [Ca]i in intact rabbit cardiac myocytes. Biophys J 1995;68(4):1453–1460.

    Google Scholar 

  41. Movsesian MA, Bristow MR, Krall J. Ca2+ uptake by cardiac sarcoplasmic reticulum from patients with idiopathic dilated cardiomyopathy. Circ Res 1989;65(4):1141–1144.

    Google Scholar 

  42. Komas N, Lugnier C, Le Bec A, Serradeil-Le Gal C, Barthelemy G, Stoclet JC. Differential sensitivity to cardiotonic drugs of cyclic AMP phosphodiesterases isolated from canine ventricular and sinoatrial-enriched tissues. J Cardiovasc Pharmacol 1989;14(2):213–220.

    Google Scholar 

  43. Shakar SF, Bristow MR. Low-level inotropic stimulation with type III phosphodiesterase inhibitors in patients with advanced symptomatic chronic heart failure receiving beta-blocking agents. Curr Cardiol Rep 2001;3(3):224–231.

    Google Scholar 

  44. Yasunaga K, Mase K. Clinical effects of oral cilostazol on suppression of platelet function in patients with cerebrovascular disease. Arzneimittelforschung 1985;35(7A):1186–1188.

    Google Scholar 

  45. Ishizaka N, Taguchi J, Kimura Y, et al. Effects of a single local administration of cilostazol on neointimal formation in balloon-injured rat carotid artery. Atherosclerosis 1999;142(1):41–46.

    Google Scholar 

  46. Kubota Y, Kichikawa K, Uchida H, et al. Pharmacologic treatment of intimal hyperplasia after metallic stent placement in the peripheral arteries. An experimental study. Invest Radiol 1995;30(9):532–537.

    Google Scholar 

  47. Tsuchikane E, Fukuhara A, Kobayashi T, et al. Impact of cilostazol on restenosis after percutaneous coronary balloon angioplasty. Circulation 1999;100(1):21–26.

    Google Scholar 

  48. Liu Y, Shakur Y, Yoshitake M, Kamabayashi J. Cilostazol (Pletal): A dual inhibitor of Cyclic Nucleotide phosphodiesterase Type 3 and Adenosine Uptake. Cardiocvascular Drug Review 2001;19(4):367–384.

    Google Scholar 

  49. Liu Y, Fong M, Cone J, Wang S, Yoshitake M, Kambayashi J. Inhibition of adenosine uptake and augmentation of ischemia-induced increase of interstitial adenosine by cilostazol, an agent to treat intermittent claudication. J Cardiovasc Pharmacol 2000;36(3):351–360.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shakur, Y., Fong, M., Hensley, J. et al. Comparison of the Effects of Cilostazol and Milrinone on cAMP-PDE Activity, Intracellular cAMP and Calcium in the Heart. Cardiovasc Drugs Ther 16, 417–427 (2002). https://doi.org/10.1023/A:1022186402442

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022186402442

Navigation