Skip to main content
Log in

Role of NMDA Receptors in Pentobarbital Tolerance/Dependence

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Effects of continuous pentobarbital administration on binding characteristics of [3H]MK-801 in the rat brain were examined by autoradiography. Animals were rendered tolerant to pentobarbital using i.c.v. infusion of pentobarbital (300μg/10μl/hr for 7 days) by osmotic minipumps and dependent by abrupt withdrawal from pentobarbital. The levels of [3H]MK-801 binding were elevated in rats 24-hr after withdrawal from pentobarbital while there were no changes except in septum and anterior ventral nuclei in tolerant rats. For assessing the role of NMDA receptor in barbiturate action, an NMDA receptor antagonist (MK-801, 2.7 femto g/10μl/hr) was co-infused with pentobarbital. The pentobarbital-infused group had a shorter duration of pentobarbital-induced loss of righting reflex (sleeping time) than that of the control group, and MK-801 alone did not affect the righting reflex. However, co-infusion of MK-801 blocked hyperthermia, and prolonged the onset of convulsions induced by t-butylbicyclophosphorothionate (TBPS) in pentobarbital withdrawal rats. In addition, elevated [35S]TBPS binding was significantly attenuated by co-infusion with MK-801. These results suggest the involvement of NMDA receptor up-regulation in pentobarbital withdrawal and that the development of dependence can be attenuated by the treatment of subtoxic dose of MK-801.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Nicoll, R. A. 1975. Pentobarbital: action on frog motoneurons. Brain Res. 96:119–123.

    Google Scholar 

  2. Macdonald, R. L., and Barker, J. L. 1978. Different actions of anticonvulsant and anesthetic barbiturates revealed by use of mammalian neurons. Science 200:775–777.

    Google Scholar 

  3. Higashi, H., and Nishi, S. 1982. Effects of barbiturates on the GABA receptor of cat primary afferent neurons. J Physiol. 332: 299–314.

    Google Scholar 

  4. Sawada, S., and Yamamoto, C. 1985. Blocking action of pentobarbital on receptors for excitatory amino acids in the guinea pig hippocampus. Exp. Brain Res. 59:226–231.

    Google Scholar 

  5. Teichberg, V., Tal, N., Goldberg, O., and Luini, A. 1984. Barbiturates, alcohols and the CNS excitatory neurotransmission: specific effects on the kainate and quisqualate receptors. Brain Res. 291:285–292.

    Google Scholar 

  6. Marszalec, W., and Narahashi, T. 1993. Use-dependent pentobarbital block of kainate and quisqualate currents. Brain Res. 608:7–15.

    Google Scholar 

  7. Morgan, W., Bermudez, J., and Chang, X. 1991. The relative potency of pentobarbital in suppressing the kainic acid-or the N-methyl-D-aspartic acid-induced enhancement of cGMP in cerebellar cells. Eur. J. Pharmacol. 204:335–338.

    Google Scholar 

  8. Collingridge, G. L., and Lester, R. A. J. 1989. Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol. Rev. 41:143–210.

    Google Scholar 

  9. Grant, K. A., Valverius, P., Hudspith, M., and Tabakoff, B. 1990. Ethanol withdrawal seizures and the NMDA receptor complex. Eur. J. Pharmacol. 176:289–296.

    Google Scholar 

  10. Gulya, K., Grant, K. A., Valverius, P., Hoffman, P. L., and Tabakoff, B. 1991. Brain regional specificity and time-course of changes in the NMDA receptor-ionophore complex during ethanol withdrawal. Brain Res. 547:129–134.

    Google Scholar 

  11. Khanna, J. M., Wu, P. H., Weiner, J., and Kalant, H. 1991. NMDA antagonist inhibits rapid tolerance to ethanol. Brain Res Bull. 26:643–645.

    Google Scholar 

  12. Wu, P. H., Mihic, S. J., Liu, J. F., Le, A. D., and Kalant, H. 1993. Blockade of chronic tolerance to ethanol by the NMDA antagonist, MK-801. Eur. J. Pharmacol. 231:157–164.

    Google Scholar 

  13. McCaslin, P. P., and Morgan, W. W. 1988. Anticonvulsive activity of several excitatory amino acid antagonists against barbital withdrawal-induced spontaneous convulsions. Eur. J. Pharmacol. 147:381–386.

    Google Scholar 

  14. Short, K. R., and Tabakoff, B. 1993. Chronic barbiturate treatment increases NMDA receptors but decreases kainate receptors in mouse cortex. Eur. J. Pharmacol. 230:111–114.

    Google Scholar 

  15. Rabbani, M., Wright, J., Butterworth, A. R., Zhou, Q., and Little, H. J. 1994. Possible involvement of NMDA receptor-mediated transmission in barbiturate physical dependence. Br. J. Pharmacol. 111:89–96.

    Google Scholar 

  16. Cooley, R. K., and Vanderwolf, C. H. 1990. Stereotaxic Surgery in the Rat: A Photographic Series (Kirby, Ontario).

  17. Paxinos, G., and Watson, C. 1986. The rat brain in stereotaxic coordinates, 2nd edit. Academic Press, Orlando, Florida.

    Google Scholar 

  18. Kimura, T., Miyaoka, T., Saunders, P. A., Baker, M. L., Hume, A. S., Yamamoto, I., and Ho, I. K. 1993. Induction of tolerance to and physical dependence on pentobarbital continuous intracer-ebroventricular administration. J. Pharm. Exp. Ther. 266:1300–1305.

    Google Scholar 

  19. Flint, B. A., and Ho, I. K. 1980. Assessment of tolerance to and physical dependence on pentobarbital, induced by multiple pellet implantation. Eur. J. Pharmacol. 65:355–363.

    Google Scholar 

  20. Saunders, P. A., Kimura, T., Miyaoka, T., and Ho, I. K. 1992. Effects of pentobarbital tolerance and withdrawal on GABAA receptor antagonist binding. Life Sci. 50:1701–1709.

    Google Scholar 

  21. Burnham, W. M. 1985. Core mechanisms in generalized convulsions. Fed. Proc. 44:2442–2445.

    Google Scholar 

  22. Sakurai, S. Y., Penny, J. B., and Young, A. B. 1993. Regionally distinct N-methyl-D-aspartate receptors distinguished by quantitative autoradiography of [3H]MK-801 binding in rat brain. J. Neurochem. 60:1344–1353.

    Google Scholar 

  23. Edgar P. P., and Schwartz R. D. 1990. Localization and characterization of 35S-t-butylbicyclophosphorothionate binding in rat brain: An autoradiographic study. J. Neurosci. 10:603–612.

    Google Scholar 

  24. Jarvis, M. F., Murphy, D. E., and Williams, M. 1987. Quantitative autoradiographic localization of NMDA receptors in rat brain using [3H]PCP: comparison with [3H]TCP binding sites. Eur. J. Pharmacol. 141:149–152.

    Google Scholar 

  25. Wong, E. H. F., Kemp, J. A., Priestly, T., Knight, A. R., Woodruff, G. N., and Iversen, L. L. 1986. The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist. Proc. Natl. Acad. Sci. USA, 83:7104–7108.

    Google Scholar 

  26. Monyer, H., Sprengel, R., Schoepfer, R., Herb, A., Higuchi, M., Lomeli, H., Burnashev, N., Sakmann, B., and Seeburg, P. H. 1992. Heteromeric NMDA receptors: Molecular and functional distinction of subtypes. Science, 256:1217–1221.

    Google Scholar 

  27. Clinschmidt, B. V., Martin, G. E., Bunting, P. R., and Papp, N. L. 1982. Central sympathomimetic activity of (+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohepten-5,10-imine (MK-801), a substance with potent anticonvulsant, central sympathomimetic and apparent anxiolytic properties. Drug Dev. Res. 2:135–145.

    Google Scholar 

  28. Olney, J. W., Price, M. T., Salles, K. S., Labruyere, J., and Frierdich, G. 1987. MK-801 powerfully protects against N-methyl-D-aspartate neurotoxicity. Eur. J. Pharmacol. 141:357–361.

    Google Scholar 

  29. Lehman-Masten, V. D., and Geyer, M. A. 1991. Spatial and temporal patterning distinguishes the locomotor activity effects of dizocilpine and phencyclidine in rats. Neuropharmacology 30:629–636.

    Google Scholar 

  30. Liljequist, S., Ossowska, K., Grabowska-Anden, M., and Anden, N. E. 1991. Effects of the NMDA receptor antagonist, MK-801, on locomotor activity and on the metabolism of dopamine in various brain areas of mice. Eur. J. Pharmacol. 195:55–61.

    Google Scholar 

  31. Loscher, W., and Honack, D. 1992. The behavioural effects of MK-801 in rats: Involvement of dopaminergic, serotonergic, and noradrenergic system. Eur. J. Pharmacol. 215:199–208.

    Google Scholar 

  32. Tricklebank, M. D., Singh, R. J., Oles, C., Preston, C., and Irversen, S. D. 1989. The behavioural effects of MK-801: A comparison with antagonists acting noncompetitively and competitively at the NMDA receptor. Eur. J. Pharmacol. 167:127–135.

    Google Scholar 

  33. Tseng, Y. T., Miyaoka, T., and Ho, I. K. 1993. Region-specific changes of GABAA receptors by tolerance to and dependence upon pentobarbital. Eur. J. Pharmacol. 236:23–30.

    Google Scholar 

  34. Tagashira, E., Izumi, T., and Yanaura, S. 1978. Experimental barbiturate dependence, I. Barbiturate dependence development in rats by drug-admixed food (DAF) method. Psychopharmacology 57:137–144.

    Google Scholar 

  35. Haefely, W., and Pole, P. 1986. Physiology of GABA enhancement by benzodiazapines and barbiturates, in Benzodiazapine/GABA Receptors and Chloride Channels: Structural and Functional Properties (Olsen R. W. and Venter, J. C., ed), pp. 195–207 Alan R. Liss, New York.

    Google Scholar 

  36. Turnbull, M. J., and Watkins, J. W. 1976. Acute tolerance to barbiturate in the rat. Eur. J. Pharmacol. 36:15–20.

    Google Scholar 

  37. Belknap, J. K., Ondrusek, G., Berg, J., and Waddingham, S. 1977. Barbiturate dependence in mice: Effects of continuous vs. discontinuous drug administration. Psychopharmacology 51:195–198.

    Google Scholar 

  38. Tabakoff, B., Yanai, J. and Ritzmann, R. F. 1978. Brain noradrenergic systems as a prerequisite for developing tolerance to barbiturates. Science 200:449–451.

    Google Scholar 

  39. Franklin, C. L. and Gruol, D. L. 1987. Acute ethanol alters the firing pattern and glutamate response of cerebellar Purkinje neurons in culture. Brain Res. 416:205–218.

    Google Scholar 

  40. Hoffman, P. L., Rabe, C. S., Moses, F., and Tabakoff, B. 1989. N-Methyl-D-aspartate receptors and ethanol: Inhibition of calcium flux and cyclic GMP production. J. Neurochem. 52:1937–1940.

    Google Scholar 

  41. Weight, F. F., Lovinger, D. M., White, G., and Peoples, R. W. 1991. Alcohol and anesthetic actions on excitatory amino acidactivated ion channels. Ann. NY Acad. Sci. 625:97–107.

    Google Scholar 

  42. Tabakoff, B., Rabe, C. S., and Hoffman, P. L. 1991. Selective effects of sedative/hypnotic drugs on excitatory amino acid receptors in brain. Ann. NY Acad. Sci. 625:488–495.

    Google Scholar 

  43. Pantazis, N. J., Dohrman, D. P., Luo, J., Thomas, J. D., Goodlett, C. R., and West, J. R. 1995. NMDA prevents alcohol-induced neuronal cell death of cerebellar granule cells in culture. Alcoh. Cli. Exp. Res. 19:846–853.

    Google Scholar 

  44. Engberg, G., and Hajos, M. 1992. Alcohol withdrawal reaction as a result of adaptive changes of excitatory amino acid receptors. Naunyn-Schmiedeberg's Arch. Pharmacol. 346:437–441.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, S., Hoshi, K. & Ho, I.K. Role of NMDA Receptors in Pentobarbital Tolerance/Dependence. Neurochem Res 22, 767–774 (1997). https://doi.org/10.1023/A:1022019423197

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022019423197

Navigation