Skip to main content
Log in

Multiple-Pool Cell Lifespan Model of Hematologic Effects of Anticancer Agents

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

The leukopenic effects of anticancer agents are described using a semi-physiologic multiple-pool cell lifespan model. The time course of myelosuppression in relation to the drug concentration vs. time profile was characterized using a three pool indirect model. The proliferation and maturation stages of myeloid cells in the bone marrow and cell removal from the circulation were quantitated with a cell life-span concept. Drug effects were assumed to take place in the bone marrow based on irreversible linear or capacity-limited cytotoxicity. Mathematical derivations and computer simulations (Adapt II) were used to examine the properties of the model. Data from the literature were also analyzed. Cell response profiles after therapy typically exhibit a lag period, reduction to a nadir, and return to baseline. The predicted values of the time periods of granulopoiesis were 10–14 days for proliferation, and 1–6 days for maturation of progenitor cells in the bone marrow. The proposed irreversible mechanism of cell killing by anticancer drugs explains previously observed relationships between leukocyte nadir counts and exposure to the drug and/or duration of drug concentrations above some threshold level. The model was applied to literature data for paclitaxel and etoposide effects on leukocyte counts. The predicted value of KC50 for paclitaxel ranged from 0.004 to 0.2 μg/mL and for etoposide 2 μg/mL. The present model accounts for drug-induced leukopenia using a physiologic cell production and loss model and irreversible cytotoxicity in a precursor pool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. C. F. Stewart, S. G. Arbuck, R_ A. Fleming, and W. E. Evans. Relation of systemic exposure to unbound etoposide and hematologic toxicity. Clin. Pharmacol. Ther. 50:385–393 (1991).

    PubMed  Google Scholar 

  2. T. Ohtsu, Y. Sasaki, T. Tamura, Y. Miyata, H. Nakanomyo, Y. Nishiwaki, and N. Saijo. Clinical pharmacokinetics and pharmacodynamics of paclitaxel: a 3–hour infusion vs. a 24–hour infusion. Clin. Cancer Res. 1:599–606(1995).

    PubMed  Google Scholar 

  3. L. Gianni, C. M. Kearns, A. Giani, G. Capri, L. Viganó, A. Locatelli, G. Bonadonna, and M. Egorin. Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic /pharmacodynamic relationship in humans. J. Clin. Oncol. 13:180–190 (1995).

    PubMed  Google Scholar 

  4. M. O. Karlsson, R. E. Port, M. R. Ratain, and L. B. Sheiner. A population model for the leukopenic effect of etoposide. Clin. Pharmacol. Ther. 57:325–334 (1995).

    PubMed  Google Scholar 

  5. H. Minami, Y. Sasaki, N. Saijo, T. Ohtsu, H. Fujii, T. Igarashi, and K. Itoh. Indirectresponse model for the time course of leukopenia with anticancer drugs. Clin. Pharmacol. Ther. 64:511–521 (1998).

    PubMed  Google Scholar 

  6. M. O. Karlsson, V. Molnar, J. Bergh, A. Freijs, and R. Larson. A general model for timedissociated pharmacokinetic-pharmacodynamic relationships exemplified by paclitaxel myelosuppression. Clin. Pharmacol. Ther. 63:11–25 (1998).

    PubMed  Google Scholar 

  7. A. S. Fokas, J. B. Keller, and B. D. Clarkson. Mathematical model of granulopoiesis and chronic myelogenous leukemia. Cancer Res. 51:2084–2091 (1991).

    PubMed  Google Scholar 

  8. N. L. Dayneka, V. Garg, and W. J. Jusko. Comparison of four basic models of indirect pharmacodynamic responses. J. Pharmacokinet. Biopharm. 21:457–478 (1993).

    PubMed  Google Scholar 

  9. W. J. Jusko. Pharmacodynamics of chemotherapeutic effects: dose-time-response relationships for phase-nonspecific agents J. Pharm. Sci. 60:892–895 (1971).

    PubMed  Google Scholar 

  10. W. Krzyzanski, R. Ramakrishnan, and W. J. Jusko. Basic pharmacodynamic models for agents which alter production of natural cells. J. Pharmacokinet. Biopharm. 27:467–489 (1999).

    PubMed  Google Scholar 

  11. N. M. Blackett and K. Adams. Cell proliferation and the action of cytotoxic agents on haemopoietic tissue. Br. J. Haematol. 23:751–758 (1972).

    PubMed  Google Scholar 

  12. I. Boll and A. Ku¨hn. Granulocytopoiesis in human bone marrow cultures studied by means of kinematography. Blood 26:449–470 (1965).

    PubMed  Google Scholar 

  13. E. Gunsilius, G. Gastl, and A. L. Petzer. Hematopoietic stem cells. Biomed. Pharmacother. 55:186–194 (2001).

    PubMed  Google Scholar 

  14. W. J. Jusko, A pharmacodynamic model for cell-cycle-specific chemotherapeutic agents. J. Pharmacokin. Biopharm. 1:175–201 (1973).

    Google Scholar 

  15. W. Krzyzanski. Asymptotics of the total net direct pharmacological effect for large doses. J. Math. Biol. 41:477–492 (2000).

    PubMed  Google Scholar 

  16. S. B. McKenzie. Textbook of Hematology, 2nd. ed., Williams & Wilkins, Baltimore, 1996.

    Google Scholar 

  17. D. Z. D'Argenio and A. Schumitzky. A program package for simulation and parameter estimation in pharmacokinetics. Comput. Prog. Biomed. 1:115–194 (1979).

    Google Scholar 

  18. L. Schacter. Etoposide phosphate: what, why, where, and how? Seminars in Oncology 23:1–7 (1996).

    Google Scholar 

  19. E. M. Newman, J. H. Doroshow, S. J. Forman, and K. G. Blume. Pharmacokinetics of high-dose etoposide. Clin. Pharmacol. Ther. 43:561–564 (1988).

    PubMed  Google Scholar 

  20. J. Zhi, C. H. Nightingale, and R. Quintiliani. Microbial pharmacodynamics of piperacillin in neutropenic mice of systemic infection due to Pseudomonas aeruginosa. J. Pharmacokin. Biopharm. 16:355–375 (1988).

    Google Scholar 

  21. F. Recchia, S. De Filippis, P. Torchio, S. Rea, A. Gulino, D. Quaglino, and L. Frati, Randomized trial of filgrastim vs. sequential filgrastim and molgramostim after dose-intensified carboplatin, cyclophosphamide, and etoposide. Am. J. Clin. Oncol. 20:209–214 (1997).

    PubMed  Google Scholar 

  22. L. E. Friberg, A. Freijs, M. Sandström, and M. O. Karlsson. Semiphysiological model for the time course of leukocytes after varying schedules of 5–fluorouracil in rats. J. Pharmacol. Exp. Ther. 295:734–740 (2000).

    PubMed  Google Scholar 

  23. M. Katashima, Y. Yamada, K. Yamamoto, H. Kotaki, H. Sato, Y. Sawada, and T. Iga. Analysis of antiplatelet effect of ticlopidine in humans: modeling based on irreversible inhibition of platelet precursors in bone marrow. J. Pharmacokinet. Biopharm. 27:283–296 (1999).

    PubMed  Google Scholar 

  24. L. G. Lajtha, R. Oliver, and C. W. Gurney. Kinetic model of a bone-marrow stem-cell population. Brit. J. Haemat. 8:442–460 (1962).

    PubMed  Google Scholar 

  25. W. J. Jusko. Interpretation of cell proliferation curves using a two-compartment cell model. Math. Biosci. 21:31–37 (1974).

    Google Scholar 

  26. T. D. Jones, M. D. Morris, R. W. Young, and R. A. Kehlet. A cell-kinetics model for radiation-induced myelopoiesis. Exp. Hematol. 21:816–822 (1993).

    PubMed  Google Scholar 

  27. G. J. Fetterly, J. Tamburlin, and R. Straubinger. Paclitaxel pharmacodynamics: Application of a mechanism-based neutropenia model. Biopharm.& Drugs Disp. 22:251–261 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krzyzanski, W., Jusko, W.J. Multiple-Pool Cell Lifespan Model of Hematologic Effects of Anticancer Agents. J Pharmacokinet Pharmacodyn 29, 311–337 (2002). https://doi.org/10.1023/A:1020984823092

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020984823092

Navigation