Skip to main content
Log in

Toward an understanding of microbial communities through analysis of communication networks

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Bacteria receive signals from diverse members of their biotic environment. They sense their own species through the process of quorum sensing, which detects the density of bacterial cells and regulates functions such as bioluminescence, virulence, and competence. Bacteria also respond to the presence of other microorganisms and eukaryotic hosts. Most studies of microbial communication focus on signaling between the microbe and one other organism for empirical simplicity and because few experimental systems offer the opportunity to study communication among various types of organisms. But in the real biological world, microorganisms must carry on multiple molecular conversations simultaneously between diverse organisms, thereby constructing communication networks. We propose that biocontrol of plant disease, the process of suppressing disease through application of a microorganism, offers a model for the study of communication among multiple organisms. Successful biocontrol requires the sending and receiving of signals between the biocontrol agent and the pathogen, plant host, and microbial community surrounding the host. We are using Bacillus cereus, a biocontrol agent, and the organisms it must interact with, to dissect a communication network. This system offers an excellent starting point for study because its members are defined and well studied. An understanding of signaling in the B. cereus biocontrol system may provide a model for network communication among organisms that share a habitat and provide a new angle of analysis for understanding the interconnections that define communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bainton NJ, Stead P, Chhabra SR, Bycroft BW, Salmond GPC, Stewart GSAB & Williams P (1992) N-(3-oxohexanoyl)-L-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. Biochem. J. 288: 997–1004.

    PubMed  CAS  Google Scholar 

  • Bassler BL (1999) How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr. Opin. Microbiol. 2: 582–587.

    Article  PubMed  CAS  Google Scholar 

  • Beaulieu C & van Gijsegem F (1990) Indentification of plant-inducible genes in Erwinia chrysanthemi 3979. J. Bacteriol. 172: 1569–1575.

    PubMed  CAS  Google Scholar 

  • Beck von Bodman S & Farrand SK (1995) Capsular polysaccharide biosynthesis and pathogenicity in Erwinia stewartii require induction by an N-acylhomoserine lactone autoinducer. J. Bacteriol. 177: 5000–5008.

    PubMed  CAS  Google Scholar 

  • Chancey ST, Wood DW & Pierson LS III (1999) Two-component transcriptional regulation of N-acyl-homoserine lactone prodcution in Pseudomonas aureofaciens. Appl Environ Microbiol 65: 2294–2299.

    PubMed  CAS  Google Scholar 

  • Cook RJ & Baker KF (1983) The Nature and Practice of Biological Control of Plant Pathogens. APS Press, St. Paul, Minnesota.

    Google Scholar 

  • Cormack BP, Valdivia RH & Falkow S (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173: 33–38.

    Article  PubMed  CAS  Google Scholar 

  • Dong YH, Xu JL, Li XZ & Zhang LH (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc. Natl. Acad. Sci. USA 97: 3526–3531.

    Article  PubMed  CAS  Google Scholar 

  • Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF & Zhang LH (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411: 813–817.

    Article  PubMed  CAS  Google Scholar 

  • Dunn AK & Handelsman J (1999) A vector for promoter-trapping in Bacillus cereus. Gene 226: 297–305.

    Article  PubMed  CAS  Google Scholar 

  • Dunny GM & Leonard BAB (1997) Cell-cell communication in Gram-positive bacteria. Annu. Rev. Microbiol. 51: 527–564.

    Article  PubMed  CAS  Google Scholar 

  • Eberl L, Winson MK, Sternberg C, Stewart GSAB, Christiansen G, Chhabra SR, Bycroft BW, Williams P, Molin S & Givskov M (1996) Involvement of N-acyl-homoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Mol. Microbiol. 20: 127–136.

    PubMed  CAS  Google Scholar 

  • Elasri M, Delorme S, Lemanceau P, Stewart G, Laue B, Glickmann E, Oger PM & Dessaux Y (2001) Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp. Appl. Environ. Microbiol. 67: 1198–1209.

    Article  PubMed  CAS  Google Scholar 

  • Emmert EAB, Milner JL, Lee JC, Pulvermacher KL, Olivares HA, Clardy J & Handelsman J (1998) Effect of canavanine from alfalfa seeds on the population biology of Bacillus cereus. Appl. Environ. Microbiol. 64: 4683–4688.

    PubMed  CAS  Google Scholar 

  • Farrand SK, Piper KR, Sackett R, Ping G, Shaw PD & Kim KS (1996) Homoserine lactone-mediated microbial signaling: a communication system common to plant-associated bacteria. In: Stacey G, Mullin B & Gresshoff PM (Eds) Biology of Plant-Microbe Interactions Proceedings of the International Symposium on Molecular Plant-Microbe Interactions (pp 173–179). International Society for Molecular Plant-Microbe Interactions, St. Paul, MN, USA.

    Google Scholar 

  • Fedi S, Tola E, Moënne-Loccoz Y, Dowling DN, Smith LM & O'Gara F (1997) Evidence for signaling between the phytopathogenic fungus Phythium ultimum and Pseudomonas fluorescens F113: P. ultimum represses the expression of genes in P. fluorescens F113, resulting in altered ecological fitness. Appl. Environ. Microbiol. 63: 4261–4266.

    PubMed  CAS  Google Scholar 

  • Felske A, Wolterink A, van Lis R & Akkermans ADL (1998) Phylogeny of the main bacterial 16S rRNA sequences in Drentse A grassland soils (The Netherlands). Appl. Environ. Microbiol. 64: 871–879.

    PubMed  CAS  Google Scholar 

  • Flavier AB, Ganova-Raeva LM, Schell MA & Denny TP (1997) Hierarchical autoinduction in Ralstonia solanacearum: Control of acyl-homoserine lactone production by a novel autoregulatory system responsive to 3-hydroxypalmitic acid methyl ester. J. Bacteriol. 179: 7089–7097.

    PubMed  CAS  Google Scholar 

  • Fuqua WC & Winans SC (1994) A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J. Bacteriol. 176: 2796–2806.

    PubMed  CAS  Google Scholar 

  • Ganova-Raeva LG, Flavier AB & Denny TP (1994) Pseudomonas solanacearum produces a homoserine-like signal molecule. Phytopathology 84: 1134.

    Google Scholar 

  • Gilbert GS, Parke JL, Clayton MK & Handelsman J (1993) Effects of an introduced bacterium on bacterial communities on roots. Ecology 74: 840–854.

    Article  Google Scholar 

  • Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD & Kjelleberg S (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signaling. J. Bacteriol. 178: 6618–6622.

    PubMed  CAS  Google Scholar 

  • Goldstein AH, Braverman K & Osorio N (1999) Evidence for mutualism between a plant growing in a phosphate-limited desert environment and a mineral phosphate solubilizing (MPS) rhizobacterium. FEMS Microbiol. Ecol. 30: 295–300.

    Article  PubMed  CAS  Google Scholar 

  • Gray KM, Pearson JP, Downie JA, Boboye BEA & Greenberg EP (1996) Cell-to-cell signaling in the symbiotic nitrogen-fixing bacterium Rhizobium leuminosarum: Autoinduction of a stationary phase and rhizosphere-expressed genes. J. Bacteriol. 178: 372–376.

    PubMed  CAS  Google Scholar 

  • Greenberg EP (1997) Quroum sensing in Gram-negative bacteria: cell density-dependent gene expression controls luminescence in marine bacteria and virulence in several pathogens. Am. Soc. Microbiol. News 63: 371–377.

    Google Scholar 

  • Halverson LJ & Handelsman J (1991) Enhancement of soybean nodulation by Bacillus cereus UW85 in the field and in a growth chamber. Appl. Environ. Microbiol. 57: 2767–2770.

    PubMed  CAS  Google Scholar 

  • Halverson LJ, Clayton MK & Handelsman J (1993) Population biology of Bacillus cereus UW85 in the rhizosphere of field-grown soybeans. Soil Biol. Biochem. 25: 485–493.

    Article  Google Scholar 

  • Handelsman J, Raffel S, Mester EJ, Wunderlich L & Grau CR (1990) Biological control of damping-off of alfalfa seedlings with Bacillus cereus UW85. Appl. Environ. Microbiol. 56: 713–718.

    PubMed  CAS  Google Scholar 

  • Handelsman J, Nesmith WC & Raffel SJ (1991) Microassay for biological and chemical control of infection of tobacco by Phytophthora parasitica var. nicotianae. Curr. Microbiol. 22: 317–319.

    Article  Google Scholar 

  • Handelsman J & Stabb EV (1996) Biocontrol of soilborne plant pathogens. Plant Cell 8: 1855–1869.

    Article  PubMed  CAS  Google Scholar 

  • Hara O & Beppu T (1982) Mutants blocked in strptomycin production in Streptomyces griseus - The role of A-factor. J. Antibiotics 35: 349–358.

    CAS  Google Scholar 

  • Hastings JW & Greenberg EP (1999) Quorum sensing: the explanation of a curious phenomenon reveals a common characteristic of bacteria. J. Bacteriol. 181: 2667–2668.

    PubMed  CAS  Google Scholar 

  • Heywood VH (Ed) (1993) Flowering Plants of the World. Oxford University Press, New York.

    Google Scholar 

  • Holden MT, Ram Chhabra S, de Nys R, Stead P, Bainton NJ, Hill PJ, Manefield M, Kumar N, Labatte M, England D, Rice S, Givskov M, Salmond GP, Stewart GS, Bycroft BW, Kjelleberg S & Williams P (1999) Quorum-sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other gram-negative bacteria. Mol. Microbiol. 33: 1254–1266.

    Article  PubMed  CAS  Google Scholar 

  • Holden M, Swift S & Williams P (2000) New signal molecules on the quorum-sensing block. Trend Microbiol. 8: 101–103.

    Article  CAS  Google Scholar 

  • Kaiser D & Losick R (1993) How and why bacteria talk to each other. Cell 73: 873–885. Khokhlov AS, Tovarova II, Borisova LN, Pliner SA, Shevchenko LA, Kornitskaya E Ya, Ivkina NS &Rapoport IA (1967) A-factor responsible for the biosynthesis of streptomycin my a mutant strain of Actinomyces streptomycini. Doklady AN SSSR 177: 232-235.

    Article  PubMed  CAS  Google Scholar 

  • Kjelleberg S, Steinberg P, Givskov M, Gram L, Manefield M & de Nys R (1997) Do marine natural products interfere with prokaryotic AHL regulatory systems? Aquat. Microb. Ecol. 13: 85–93.

    Google Scholar 

  • Kleerebezem M, Quadri LEN, Kuipers OP & de Vos WM (1997) Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol. Microbiol. 24: 895–904.

    Article  PubMed  CAS  Google Scholar 

  • Kluyver AJ (1956) Pseudomonas aureofaciens nov. spec. and its pigments. J. Bacteriol. 72: 406–411.

    PubMed  CAS  Google Scholar 

  • Kuo A, Blough NV & Dunlap PV (1994) Multiple N-acyl-L-homoserine lactone autoinducers of luminescence in the marine symbiotic bacterium Vibrio fischeri. J. Bacteriol. 176: 7558–7565.

    PubMed  CAS  Google Scholar 

  • Laue BE, Jiang Y, Chhabra SR, Jacob S, Stewart GS, Hardman A, Downie JA, O'Gara F & Williams P (2000) The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl)homoserine lactone, via HdrS, a putative novel N-acylhomoserine lactone synthase. Microbiology 146: 2469–2480.

    PubMed  CAS  Google Scholar 

  • Leadbetter JR & Greenberg EP (2000) Metabolism of acylhomoserine lactone quorum-sensing signals by Variovorax paradoxus. J. Bacteriol. 182: 6921–6926.

    Article  PubMed  CAS  Google Scholar 

  • Lumsden RD, Lewis JA & Fravel DR (1995) Formulation and delivery of biocontrol agents for use against soilborne plant pathogens. In: Hall FR & Barry JW (Eds) Biorational Pest Control Agents Formulation and Delivery, ACS Symposium Series 595 (pp 166–182). American Chemical Society, Washington DC.

    Google Scholar 

  • Magnuson R, Solomon J & Grossman AD (1994) Biochemical and genetic characterization of a competence pheromone from B. subtilis. Cell 77: 207–216.

    Article  PubMed  CAS  Google Scholar 

  • Mahan MJ, Slauch JM & Mekalanos JJ (1993) Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259: 686–688.

    PubMed  CAS  Google Scholar 

  • Manefield M, de Nys R, Kumar N, Read R, Givskov M, Steinberg P & Kjelleberg S (1999) Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 145: 283–291.

    PubMed  CAS  Google Scholar 

  • Milner JL, Raffel SJ, Lethbridge BJ & Handelsman J (1995) Culture conditions that influence accumulation of zwittermicin A by Bacillus cereus UW85. Appl. Microbiol. Biotechnol. 43: 685–691.

    PubMed  CAS  Google Scholar 

  • Milner JL, Silo-Suh L, Lee JC, He H, Clardy J & Handelsman J (1996) Production of Kanosamine by Bacillus cereus UW85. Appl. Environ. Microbiol. 62: 3061–3065.

    PubMed  CAS  Google Scholar 

  • Nealson KH, Platt T & Hastings JW (1970) Cellular control of the synthesis and activity of the bacterial luminescent system. J. Bacteriol. 104: 313–322.

    PubMed  CAS  Google Scholar 

  • Ørreås L & Torsvik V (1998) Microbial diversity and community structure in two different agricultural soil communities. Microbial Ecol. 36: 303–315.

    Article  Google Scholar 

  • Osburn RM, Milner JL, Oplinger ES, Smith RS & Handelsman J (1995) Effect of Bacillus cereus UW85 on the yield of soybean at two field sites in Wisconsin. Plant Dis. 79: 551–556.

    Article  Google Scholar 

  • Osbourn AE, Barber CE & Daniels MJ (1987) Identification of plant-induced genes of the bacterial pathogen Xanthomonas campestris pathovar campestris using a promoter-probe plasmid. EMBO J. 6: 23–28.

    PubMed  CAS  Google Scholar 

  • Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP & Iglewski BH (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 96: 11229–11234.

    Article  PubMed  CAS  Google Scholar 

  • Peters NK, Frost JW & Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233: 977–980.

    PubMed  CAS  Google Scholar 

  • Phipps PM (1992) Evaluation of biological agents for control of Sclerotinia blight of peanut. 1991 Biol. Cult. Tests. Con. Plant. Dis. 7: 60.

    Google Scholar 

  • Pierson LS, Keppenne VD & Wood DW (1994) Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30-84 is regulated by PhzR in response to cell density. J. Bacteriol. 176: 3966–3974.

    PubMed  CAS  Google Scholar 

  • Pierson LS III & Pierson EA (1996) Phenazine antibiotic production in Pseudomonas aureofaciens: role in rhizosphere ecology and pathogen suppression. FEMS Microbiol. Lett. 136: 101–108.

    Article  CAS  Google Scholar 

  • Pirhonen M, Flego D, Heikinheimo R & Palva ET (1993) A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia caratovora. EMBO J. 12: 2467–2476.

    PubMed  CAS  Google Scholar 

  • Preston GM, Haubold B & Rainey PB (1998) Bacterial genomics and adaptation to life on plants: implications for the evolution of pathogenicity and symbiosis. Curr. Opin. Microbiol. 1: 589–597.

    Article  PubMed  CAS  Google Scholar 

  • Raffel SJ, Stabb EV, Milner JL & Handelsman J (1996) Genotypic and phenotypic analysis of zwittermicin A-producing strains of Bacillus cereus. Microbiology 142: 3425–3436.

    Article  PubMed  CAS  Google Scholar 

  • Rainey PB (1999) Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ. Microbiol. 1: 243–257.

    Article  PubMed  CAS  Google Scholar 

  • Rice SA, Givskov M, Steinberg P & Kjelleberg S (1999) Bacterial signals and antagonists: The interaction between bacteria and higher organisms. J. Mol. Microbiol. Biotechnol. 1: 23–31.

    PubMed  CAS  Google Scholar 

  • Rodelas B, Lithgow JK, Wisniewski-Dye F, Hardman A, Wilkinson A, Economou A, Williams P & Downie JA (1999) Analysis of quorum-sensing dependent control of rhizosphere-expressed (rhi) genes in Rhizobium leguminosarum bv. viciae. J. Bacteriol. 181: 3816–3823.

    PubMed  CAS  Google Scholar 

  • Salmond GPC, Bycroft BW, Stewart GSAB & Williams P (1995) The bacterial 'enigma': cracking the code of cell-cell communication. Mol. Microbiol. 16: 615–624.

    PubMed  CAS  Google Scholar 

  • Schauder S, Shokat K, Surette MG & Bassler BL (2001) The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol. Microbiol. 41: 463–476.

    Article  PubMed  CAS  Google Scholar 

  • Schripsema J, de Rudder KEE, van Vliet TB, Lankhorst PP, de Vroom E, Kijne JW & van Brussel AAN (1996) Bacteriocin small of Rhizobium leguminosarum belongs to the class of N-acyl-L-homoserine lactone molecules, known as autoinducers and as quorum sensing co-transcription factors. J. Bacteriol. 178: 366–371.

    PubMed  CAS  Google Scholar 

  • Shang H, Chen J, Handelsman J & Goodman RM (1999) Behavior of Pythium torulosum zoospores during their interaction with tobacco roots and Bacillus cereus. Curr. Microbiol. 38: 199–204.

    Article  PubMed  CAS  Google Scholar 

  • Shaw PD, Ping G, Daly SL, Cha C, Cronan JE Jr, Rinehart KL & Farrand SK (1997) Detecting and characterizing N-acylhomoserine lactone signal molecules by thin-layer chromatography. Proc. Natl. Acad. Sci. 94: 6036–6041.

    Article  PubMed  CAS  Google Scholar 

  • Silo-Suh LA, Lethbridge BJ, Raffel SJ, He H, Clardy J & Handelsman J (1994) Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl. Environ. Microbiol. 60: 2023–2030.

    PubMed  CAS  Google Scholar 

  • Slater H, Alvarez-Morales A, Barber CE, Daniels MJ & Dow JM (2000) A two-component system involving and HD-GYP domain protein links cell-cell signaling to pathogenicity gene expression in Xanthomonas campestris. Mol. Microbiol. 38: 986–1003.

    Article  PubMed  CAS  Google Scholar 

  • Smith KP, Havey MJ & Handelsman J (1993) Suppression of cottony leak of cucumber with Bacillus cereus strain UW85. Plant Dis. 77: 139–142.

    Article  Google Scholar 

  • Smith LM, Tola E, deBoer P & O'Gara F (1999) Signalling by the fungus Pythium ultimum represses expression of two ribosomal RNA operons with key roles in the rhizosphere ecology of Pseudomonas fluorescens F113. Environ. Microbiol. 1: 495–502.

    Article  PubMed  CAS  Google Scholar 

  • Stabb EV, Jacobson LM & Handelsman J (1994) Zwittermicin A-producing strains of Bacillus cereus from diverse soils. Appl. Environ. Microbiol. 60: 4404–4412.

    PubMed  CAS  Google Scholar 

  • Stacey G, Sanjuan J, Luka S, Dockendorff T & Carlson RW (1995) Signal exchange in the Bradyrhizobium-soybean symbiosis. Soil Biol. Biochem. 27: 473–483.

    Article  CAS  Google Scholar 

  • Stachel SE, Messens E, van Montagu M & Zambryski P (1985) Indentification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318: 624–629.

    Article  Google Scholar 

  • Surette MG, Miller MB & Bassler BL (1999) Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: A new family of genes responsible for autoinducer production. Proc. Natl. Acad. Sci. USA 96: 1639–1644.

    Article  PubMed  CAS  Google Scholar 

  • Teplitski M, Robinson JB & Bauer WD (2000) Plants secrete subatnces that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol. Plant Microbe Interact. 13: 637–648.

    PubMed  CAS  Google Scholar 

  • Ueda T, Suga Y & Matsuguchi T (1995) Molecular phylogenetic analysis of a soil microbial community in a soybean field. Eur. J. Soil Sci. 46: 415–421.

    Article  Google Scholar 

  • Upton M, Tagg JR, Wescombe P & Henkinson HF (2001) Intra-and interspecies signaling between Streptococcus salivarius and Streptococcus pyogenes mediated by SalA and SalA1 lantibiotic peptides. J. Bacteriol. 183: 3931–3938.

    Article  PubMed  CAS  Google Scholar 

  • Valdivia RH & Falkow S (1996) Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol. Microbiol. 22: 367–378.

    Article  PubMed  CAS  Google Scholar 

  • van Basterlaere E, de Mot R, Michiels K & Vanderleyden J (1993) Differential gene expression in Azospirillum spp. by plant root exudates: Analysis of protein profiles by two-dimensional polyacrylamide gel electrophoresis. FEMS Microbiol. Lett. 112: 335–342.

    Google Scholar 

  • van Overbeek LS & van Elsas JD (1995) Root exudate-induced promoter activity in Pseudomonas fluorescens mutants in the wheat rhizosphere. Appl. Environ. Microbiol. 61: 890–898.

    PubMed  CAS  Google Scholar 

  • Whitman WB, Coleman DC & Wiebe WJ (1998) Prokaryotes: The unseen majority. Proc. Natl. Acad. Sci. USA 95: 6578–6583.

    Article  PubMed  CAS  Google Scholar 

  • Winans SC (1992) Two-way chemical signaling in Agrobacterium-plant interactions. Micriobiol. Rev. 56: 12–31.

    CAS  Google Scholar 

  • Wood DW & Pierson LS III (1996) The phzI gene of Pseudomonas aureofaciens 30-84 is responsible for the production of a diffusible signal required for phenazine antibiotic production. Gene 168: 49–53.

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Murphy PJ, Kerr A & Tate ME (1993) Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones. Nature 362: 446–448.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jo Handelsman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunn, A.K., Handelsman, J. Toward an understanding of microbial communities through analysis of communication networks. Antonie Van Leeuwenhoek 81, 565–574 (2002). https://doi.org/10.1023/A:1020565807627

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020565807627

Navigation