Skip to main content
Log in

Effect of Substituted Benzoylglycines (Hippurates) and Phenylacetylglycines on p-Aminohippurate Transport in Dog Renal Membrane Vesicles

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The effect of substituted benzoylglycines (hippurates) and phenylacetylglytines on the transport of p-aminohippurate (PAH) was studied in basolateral (BLMV) and brush border membrane vesicles (BBMV) isolated from dog kidney cortex. The probenecid-sensitive part of 100 µM [3H]PAH uptake into BLMV and BBMV was measured in the presence and absence of 5 mM glycine conjugate. The benzoyl- and phenylacetylglycines studied were substituted in the 2-, 3-, or 4-position with an H, CH3, OCH3 or OH group. Benzoylglycines were stronger inhibitors of PAH transport than phenylacetylglycines and the inhibitory potency of the conjugates was in general lower against the transporter in BBMV than BLMV. The specificities of the transporters in both membranes appear to be very similar. The inhibitory potency of the benzoylglycines, expressed as the apparent inhibition constant (logK i), did not show a linear relationship with their lipophilicity as determined by reversed phase HPLC. Deviation from linearity was caused mainly by the 3-OH and 4-OH analogs, which showed a greater inhibitory potency than expected from their lipophilicity. Phenylacetylglycines only showed a small variation in logK i, values, indicating that insertion of a CH2 group between the ring and the carbonyl practically abolishes the influence of the ring and its substituents. In conclusion, both hydrophobic and electronic properties are important determinants of affinity for the PAH transport system. An additional partially negative hydroxyl group in the ring, located preferably at the 3- or 4-position, increases the interaction with the transport system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. J. Caldwell. Conjugation of xenobiotic carboxylic acids. In W. B. Jakoby, J. R. Bend, and J. Caldwell (eds.), Metabolic Basis of Detoxication, Academic Press, New York, 1982, pp. 271–290.

    Google Scholar 

  2. J. V. Møller and M. I. Sheikh. Renal organic anion transport system: Pharmacological, physiological and biochemical aspects. Pharmacol. Rev. 34:315–358 (1983).

    Google Scholar 

  3. J. B. Pritchard and D. S. Miller. Proximal tubular transport of organic anions and cations. In D. W. Seldin and G. Giebisch (eds.), The Kidney: Physiology and Pathophysiology, Second Edition, Raven Press, New York, 1992, pp. 2921–2945.

    Google Scholar 

  4. P. K. Knoefel and K. C. Huang. The biochemorphology of renal tubular transport: iodinated benzoic acids. J. Pharmacol. Exp. Ther. 117:307–316 (1956).

    Google Scholar 

  5. J. J. Grantham and A. M. Chonko. Renal handling of organic anions and cations; Metabolism and excretion of uric acid. In B. M. Brenner, F. C. Rector (eds.), The Kidney, WB Saunders, Philadelphia, 1986, pp. 663–700.

    Google Scholar 

  6. A. Despopoulos. A definition of substrate specificity in renal transport of organic anions. J. Theoret. Biol. 8:163–192 (1965).

    Google Scholar 

  7. A. Essig and J. V. Taggert. Competitive inhibition of renal transport of p-aminohippurate by other mono-substituted hippurates. Am. J. Physiol. 199:509–512 (1960).

    Google Scholar 

  8. K. J. Ullrich and G. Rumrich. Contraluminal transport systems in the proximal renal tubule involved in secretion of organic anions. Am. J. Physiol. 254:F453–F462 (1988).

    Google Scholar 

  9. K. J. Ullrich, G. Rumrich, and S. Klöss. Contraluminal para-aminohippurate (PAH) transport in the proximal tubule of the rat kidney IV. Specificity: mono-and polysubstituted benzene analogs. Pflügers Arch. 413:134–146 (1988).

    Google Scholar 

  10. K. J. Ullrich, G. Rumrich, and S. Klöss. Contraluminal organic anion and cation transport in the proximal renal tubule: V. Interaction with sulfamoyl-and phenoxy diuretics, and with beta-lactam antibiotics. Kidney Int. 36:78–88 (1989).

    Google Scholar 

  11. K. J. Ullrich, G. Rumrich, Th. Wieland, and W. Dekant. Contraluminal para-aminohippurate (PAH) transport in the proximal tubule of the rat kidney VI. Specificity: Amino acids, their N-methyl, N-acetyl-and N-benzoylderivatives; glutathione-and cysteine conjugates, di-and oligopeptides. Pflügers Arch. 415:342–350 (1989).

    Google Scholar 

  12. K. J. Ullrich, G. Rumrich, F. Papavassiliou, S. Klöss, and G. Fritzsch. Contraluminal para-aminohippurate (PAH) transport in the proximal tubule of the rat kidney VII. Specificity: cyclic nucleotides, eicosanoids. Pflügers Arch. 418:360–370 (1991).

    Google Scholar 

  13. K. J. Ullrich, G. Rumrich, F. Papavassiliou, and K. Hierholzer. Contraluminal para-aminohippurate (PAH) transport in the proximal tubule of the rat kidney VIII. Transport of corticosteroids. Pflügers Arch. 418:371–382 (1991).

    Google Scholar 

  14. G. Fritzsch, G. Rumrich, and K. J. Ullrich. Anion transport through the contraluminal cell membrane of renal proximal tubule. The influence of hydrophobicity and molecular charge distribution on the inhibitory activity of organic anions. Biochim. Biophys. Acta 978:249–256 (1989).

    Google Scholar 

  15. F. G. M. Russel, M. Heijn, R. C. de Laet, and C. A. M. van Ginneken. Effect of substituted benzoates on p-aminohippurate transport in dog renal membrane vesicles. Naunyn-Schmied. Arch. Pharmacol. 343:102–107 (1991).

    Google Scholar 

  16. S. E. Guggino, G. J. Martin, P. S. Aronson. Specificity and modes of the anion exchanger in dog renal microvillus membranes. Am. J. Physiol. 244:F612–F621 (1983).

    Google Scholar 

  17. K. J. Ullrich, G. Rumrich, S. Klöss, and H. Fasold. Reabsorption of monocarboxylic acids in the proximal tubule of the rat kidney III. Specificity for aromatic compounds. Pflügers Arch. 395:227–231 (1982).

    Google Scholar 

  18. F. G. M. Russel, P. E. M. van der Linden, W. G. Vermeulen, M. Heijn, C. H. Van Os, and C. A. M. van Ginneken. Na+ and H+ gradient-dependent transport of p-aminohippurate in membrane vesicles from dog kidney cortex. Biochem. Pharmacol. 37:2639–2649 (1988).

    Google Scholar 

  19. T. Yamana, A. Tsuji, E. Miyamaoto, and O. Kubo. Novel method for determination of partition coefficients of penicillins and cephalosporins by high-performance liquid chromatography. J. Pharm. Sci. 66:747–749 (1977).

    Google Scholar 

  20. A. Vogel. Vogel's Practical Organic Chemistry, Longman, London, 1978, p. 885.

    Google Scholar 

  21. S. M. McElvain and T. P. Carney. Piperidine derivatives. XVII. Local anesthetics derived from substituted piperidino alcohols. J. Am. Chem. Soc. 68:2592–2600 (1946).

    Google Scholar 

  22. W. van Brussel and C. F. van Sumere. N-Acylamino acids and peptides. VI. A simple synthesis of N-acylglycines of the benzoyl and cinnamyl type. Bull. Soc. Chim. Belg. 87:791–797 (1978).

    Google Scholar 

  23. E. Solheim and R. R. Scheline. Metabolism of alkene benzene derivatives in the rat. I. p-Methoxyallylbenzene (estragole) and p-methoxypropenylbenzene (anethole). Xenobiot. 3:493–510 (1973).

    Google Scholar 

  24. J. W. ApSimon, D. G. Durham, and A. H. Rees. Synthesis of some 2-phenylpyrolle derivatives. J. Chem. Soc. Perkin. Trans. 12:1588–1594 (1978).

    Google Scholar 

  25. Beilstein's Handbuch der Organischen Chemie, Vierte Auflage, Band IX, Julius Springer, Berlin, 1926, pp. 465, 477, 487.

  26. A. J. Quick. The site of the synthesis of hippuric acid and phenylaceturic acid in the dog. J. Biol. Chem. 90:73–82 (1932).

    Google Scholar 

  27. E. Salkowski and H. Salkowski. Ueber das verhalten der phenylessigsaüre und phenylpropionsaüre im Organismus. Berichte 12:653–655 (1879).

    Google Scholar 

  28. F. G. M. Russel, A. C. Wouterse, and C. A. M. van Ginneken. Renal clearance of substituted hippurates in the dog. I. Benzoylgycine (hippurate) and methyl-substituted benzoylglycines. J. Pharmacol. Exp. Ther. 248:428–35 (1989).

    Google Scholar 

  29. F. G. M. Russel, A. C. Wouterse, and C. A. M. van Ginneken. Renal clearance of substituted hippurates in the dog. II. 4-Amino-, hydroxy-and methoxy-substituted benzoylglycines. J. Pharmacol. Exp. Ther. 248:436–46 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russel, F.G.M., Vermeulen, W.G. Effect of Substituted Benzoylglycines (Hippurates) and Phenylacetylglycines on p-Aminohippurate Transport in Dog Renal Membrane Vesicles. Pharm Res 11, 1829–1833 (1994). https://doi.org/10.1023/A:1018992106452

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018992106452

Navigation