Skip to main content
Log in

Pluronic P85 Increases Permeability of a Broad Spectrum of Drugs in Polarized BBMEC and Caco-2 Cell Monolayers

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Previous studies demonstrated that inhibition of P glycoprotein (P-gp) by Pluronic P85 (P85) block copolymer increases apical (AP) to basolateral (BL) transport of rhodamine 123 (R123) in the polarized monolayers of bovine brain microvessel endothelial cells (BBMEC) and Caco-2 cells. The present work examines the effects of P85 on the transport of fluorescein (Flu), doxorubicin (Dox), etoposide (Et), taxol (Tax), 3′-azido-3′-deoxythymidine (AZT), valproic acid (VPA) and loperamide (Lo) using BBMEC and Caco-2 monolayers as in vitro models of the blood brain barrier and intestinal epithelium respectively.

Methods. Drug permeability studies were performed on the confluent BBMEC and Caco-2 cell monolayers mounted in Side-Bi-Side diffusion cells.

Results. Exposure of the cells to P85 significantly enhanced AP to BL permeability coefficients of Flu, Tax, Dox and AZT in both cell models. Further, P85 enhanced AP to BL transport of Et, VPA and Lo in Caco-2 monolayers. No changes in the permeability coefficients of the paracellular marker mannitol were observed in the presence of the copolymer.

Conclusions. P85 increases AP to BL permeability in BBMEC and Caco-2 monolayers with respect to a broad panel of structurally diverse compounds, that were previously shown to be affected by P-gp and/ or multidrug resistance associated protein (MRP) efflux systems. Broad specificity of the block copolymer effects with respect to drugs and efflux systems appears to be a valuable property in view of developing pharmaceutical formulations to increase drug accumulation in selected organs and overcome both acquired and intrinsic drug resistance that limits the effectiveness of many chemotherapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. Ling. Multidrug resistance: molecular mechanisms and clinical relevance. Cancer Chemother. Pharmacol. 40 Suppl:S3-8 (1997).

    Google Scholar 

  2. A. Krishan, C. M. Fitz, and I. Andritsch. Drug retention, efflux, and resistance in tumor cells. Cytometry 29:279-285 (1997).

    Google Scholar 

  3. H. W. Van Veen and W. N. Konings. Multidrug transport from bacteria to man: similarities in structure and function. Semin. Cancer Biol. 8:183-191 (1997).

    Google Scholar 

  4. B. L. Lum and M. P. Gosland. MDR expression in normal tissues. Drug Resist. Clin. Oncol. Hematol. 9:319-336 (1995).

    Google Scholar 

  5. C. Cordon-Cardo, J. P. O'Brien, D. Casals, L. Rittman-Grauer, J. L. Biedler, M. R. Melamed, and J. R. Bertino. Multidrug resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc. Natl. Acad. Sci. USA. 86:695-698 (1989).

    Google Scholar 

  6. W. H. M. Peters, C. E. W. Boon, H. M. J. Roelofs, T. Wobbes, F. M. Nagengast, and P. G. Kremers. Expression of drug-metabolizing enzymes and P-170 glycoprotein in colorectal carcinoma and normal mucosa. Gastroenterol. 103:448-455 (1992).

    Google Scholar 

  7. M. Fontaine, W. F. Elmquist, and D. W. Miller. Use of rhodamine 123 to examine the functional activity of P-glycoprotein in primary cultured brain microvessel endothelial cell monolayers. Life Sci. 59:1521-1531 (1996).

    Google Scholar 

  8. Y. H. Huai, D. T. Secrest, K. S. Mark, D. Carney, C. Brandquist, W. F. Elmquist, and D. W. Miller. Expression of multidrug resistance-associated protein (MRP) in brain microvessel endothelial cells. Biochem. Biophys. Res. Comm. 243:816-820 (1998).

    Google Scholar 

  9. K. I. Hosoya, K. J. Kim, and V. H. Lee. Age-dependent expression of P-glycoprotein gp170 in Caco-2 cell monolayers. Pharm. Res. 13:885-890 (1996).

    Google Scholar 

  10. V. D. Makhey, A. Guo, D. A. Norris, P. Hu, J. Yan, and P. J. Sinko. Characterization of the regional intestinal kinetics of drug efflux in rat and human intestine and in Caco-2 cells. Pharm. Res. 15:1160-1167 (1998).

    Google Scholar 

  11. V. Yu. Alakhov, E. Y. Moskaleva, E. V. Batrakova, and A. V. Kabanov. Hypersensitization of multidrug resistant human ovarian carcinoma cells by Pluronic P85 block copolymer. Bioconjugate Chem. 7:209-216 (1996).

    Google Scholar 

  12. A. Venne, S. Li, R. Mandeville, A. Kabanov, and V. Alakhov. Hypersensitizing effect of pluronic L61 on cytotoxic activity, transport and subcellular distribution of doxorubicin in multiple drug-resistant cells. Cancer Res. 56:3626-3629 (1996).

    Google Scholar 

  13. D. W. Miller, E. V. Batrakova, and A. V. Kabanov. Inhibition of multidrug resistance-associated protein (MRP) functional activity with Pluronic block copolymers. Pharm Res. 16:396-401 (1999).

    Google Scholar 

  14. D. W. Miller, E. V. Batrakova, T. O. Waltner, V. Yu. Alakhov, and A. V. Kabanov. Interactions of Pluronic block copolymers with brain microvessel endothelial cells: evidence of two potential pathways for drug absorption. Bioconjug. Chem. 8:649-657 (1997).

    Google Scholar 

  15. E. V. Batrakova, H-Y. Han, V. Yu. Alakhov, D. W. Miller, and A. V. Kabanov. Effect of Pluronic block copolymers on drug absorption in Caco-2 cell monolayers. Pharm. Res. 15:852-857 (1998).

    Google Scholar 

  16. E. V. Batrakova, H-Y. Han, D. W. Miller, and A. V. Kabanov. Effects of Pluronic P85 unimers and micelles on drug permeability in polarized BBMEC and Caco-2 cells. Pharm. Res. 15:1525-1532 (1998).

    Google Scholar 

  17. D. W. Miller, K. L. Audus, and R. T. Borchardt. Application of cultured bovine brain endothelial cells of the brain microvasiculature in the study of the blood-brain barrier. J. Tiss. Cult. Meth. 14:217-224 (1992).

    Google Scholar 

  18. J. Fogh, J. M. Fogh, and T. J. Orfeo. One hundred and twenty seven cultured human cell lines producing tumors in nude mice. J. Natl. Cancer Inst. 59:221-226 (1977).

    Google Scholar 

  19. G. M. Pauletti, S. Gangwar, F. W. Okumu, T. J. Siahaan, V. J. Stella, and R. H. Borchardt. Esterase-sensitive cyclic prodrugs of peptides: evaluation of an acyloxyalkoxy promoiety in a model hexapeptide. Pharm. Res. 13:1615-1623 (1996).

    Google Scholar 

  20. J. Karlsson and P. Arturson. A new diffusion chamber system for the determination of drug permeability coefficients across the human intestinal epithelium that are independent of the unstirred water layer. Biochim. Biophys. Acta. 1111:204-210 (1992).

    Google Scholar 

  21. W. Berger, L. Elbling, E. Hauptmann, and M. Micksche. Expression of the multidrug resistance-associated protein (MRP) and chemoresistance of human non-small-cell lung cancer cells. Int. J. Cancer. 73:84-93 (1997).

    Google Scholar 

  22. M. Essodaigui, H. J. Broxterman, and A. Garnier-Suillerot. Kinetic analysis of calcein and calcein-acetoxymethylester efflux mediated by the multidrug resistance protein and P-glycoprotein. Biochemistry 37:2243-2250 (1998).

    Google Scholar 

  23. J. Van Ark Otte, G. Samelis, G. Rubio, J. B. Lopez-Saez, H. M. Pinedo, and G. Giaccone. Effects of tubulin-inhibiting agents in human lung and breast cancer cell lines with different multidrug resistance phenotypes. Oncol. Rep. 5:249-255 (1998).

    Google Scholar 

  24. K. Takasawa, T. Terasaki, H. Suzuki, and Y. Sugiyama. In vivo evidence for carrier-mediated efflux transport of 3′-azido-3′-deoxythymidine and 2′,3′-dideoxyinosine across the blood-brain barrier via a probenecid-sensitive transport system. J. Pharmacol. Exp. Ther. 281:369-375 (1997).

    Google Scholar 

  25. D. Wu, J. G. Clement, and W. M. Pardridge. Low blood-brain barrier permeability to azidothymidine (AZT), 3TC, and thymidine in the rat. Brain Res. 791:313-316 (1998).

    Google Scholar 

  26. Y. Wang, Y. Wei, and R. J. Sawchuk. Zidovudine transport within the rabbit brain during intracerebroventricular administration and the effect of probenecid. J. Pharm. Sci. 86:1484-1490 (1997).

    Google Scholar 

  27. K. D. Adkinson, K. M. Powers, A. A. Artru, and D. D. Shen. Effect of para-aminohippurate on the efflux of valproic acid from the central nervous system of the rabbit. Epilepsy Res. 23:95-104 (1996).

    Google Scholar 

  28. A. H. Schinkel, E. Wagenaar, C. A. Mol, and L. van-Deemter. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J. Clin. Invest. 97:2517-2524 (1996).

    Google Scholar 

  29. M. M. Nerurkar, N. F. H. Ho, P. S. Burton, T. J. Vidmar, and R. T. Borchardt. Mechanistic roles of neutral surfactants on concurrent polarized and passive membrane transport of a model peptide in Caco-2 cells. J. Pharm. Sci. 7:813-821 (1997).

    Google Scholar 

  30. E. V. Batrakova, T. Yu. Dorodnych, E. Yu. Klinskii, E. N. Kliushnenkova, O. B. Shemchukova, S. A. Arjakov, V. Yu. Alakhov, and A. V. Kabanov. Anthracycline antibiotics non-covalently incorporated into micelles of Pluronic block copolymers: activity against drug sensitive and resistant tumors. Br. J. Cancer 74:1545-1552 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Kabanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batrakova, E.V., Li, S., Miller, D.W. et al. Pluronic P85 Increases Permeability of a Broad Spectrum of Drugs in Polarized BBMEC and Caco-2 Cell Monolayers. Pharm Res 16, 1366–1372 (1999). https://doi.org/10.1023/A:1018990706838

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018990706838

Navigation