Skip to main content
Log in

Intestinal Peptide Transport Systems and Oral Drug Availability

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The intestinal peptide transport system has broad substrate specificities. In addition to its physiological function of absorbing di- and tripeptides resulting from the digestion of dietary proteins, this transport system also absorbs some orally administered peptidomimetic drugs, including β-lactam antibiotics, angiotensin converting enzyme inhibitors, renin inhibitors, bestatin, thrombin inhibitors, and thyrotropin-releasing hormone and its analogues. There have been several studies on the mechanism and substrate structure-affinity relationship for this transport system. Rapid progress has been made recently in studies on the molecular basis of the intestinal peptide transport system. A protein apparently involved in peptide transport has been isolated from rabbit small intestines, and genes for human intestinal peptide transporters have been cloned, sequenced and functionally expressed. This review summarizes these studies and addresses the pharmaceutical potential of the intestinal peptide transport system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. A. H. Dantzig, D. C. Duckworth, and L. B. Tabas. Transport mechanisms responsible for the absorption of loracarbef, cefixime, and cefuroxime axetil into human intestinal Caco-2 cells. Biochim. Biophys. Acta 1191:7-13 (1994).

    Google Scholar 

  2. A. H. Dantzig and L. Bergin. Carrier-mediated uptake of cephalexin in human intestinal cells. Biochem. Biophys. Res. Commun. 155:1082-7 (1988).

    Google Scholar 

  3. A. H. Dantzig, L. B. Tabas, and L. Bergin. Cefaclor uptake by the proton-dependent dipeptide transport carrier of human intestinal Caco-2 cells and comparison to cephalexin uptake. Biochim. Biophys. Acta 1112:167-73 (1992).

    Google Scholar 

  4. W. Kramer, F. Girbig, U. Gutjahr, H. W. Kleeman, I. Leipe, H. Urbach, and A. Wagner. Interaction of renin inhibitors with the intestinal uptake system for oligopeptides and beta-lactam antibiotics. Biochim. Biophys. Acta 1027:25-30 (1990).

    Google Scholar 

  5. D. T. Thwaites, M. Cavet, B. H. Hirst, and N. L. Simmons. Angiotensin-converting enzyme (ACE) inhibitor transport in human intestinal epithelial (Caco-2) cells. Br. J. Pharmacol. 114:981-6 (1995).

    Google Scholar 

  6. D. I. Friedman and G. L. Amidon. Intestinal-absorption mechanism of dipeptide angiotensin converting enzyme-inhibitors of the lysyl-proline type-lisinopril and SQ-29.852. J. Pharm. Pharmacol. 78:995-98 (1989).

    Google Scholar 

  7. Y. Tomita, T. Katsura, T. Okano, K. I. Inui, and R. Hori. Transport mechanisms of bestatin in rabbit intestinal brush border membrane: Role of H+/dipeptide cotransport system. J. Pharmacol. Exp. Ther. 252:859-62 (1990).

    Google Scholar 

  8. J. M. Addison, D. Burston, J. A. Dalrymple, D. M. Matthews, J. W. Payne, M. H. Sleisenger, and S. Wilinso. A common mechanism for transport of di-and tripeptides by hamster jejunum in vitro. Clin. Sci. Mol. Med. 49:313-22 (1975).

    Google Scholar 

  9. M. Himukai and T. Hoshi. Mechanisms of glycyl-L-leucine uptake by guinea-pig small intestine: relative importance of intact-peptide transport. J. Physiol. 302:155-69 (1980).

    Google Scholar 

  10. V. Ganapathy and F. H. Leibach. Role of pH gradient and membrane potential in dipeptide transport in intestinal and renal brush-border membrane vesicles from the rabbit. Studies with L-carnosine and glycyl-L-proline. J. Biol. Chem. 258:14189-92 (1983).

    Google Scholar 

  11. K.-I. Inui, Y. Tomita, T. Katsura, T. Okano, M. Takano, and R. Hori. H+ coupled active transport of bestatin via the dipeptide transport system in rabbit intestinal brush-border membranes. J. Pharmacol. Exp. Ther. 260:482-6 (1992).

    Google Scholar 

  12. E. P. Eddy, C. Wood, J. Miller, G. Wilson, and I. J. Hidalgo. A comparison of the affinities of dipeptides and antibodies for the di-/tripeptide transporter in Caco-2 cells. Int. J. Pharm. 115:79-86 (1995).

    Google Scholar 

  13. F. M. Ryan and P. L. Smith. Effects of altering fluid transport on the absorption of benzylpenicillin and mannitol across rat intestinal mucosa in vitro. Pharm. Res. 6:S-88 (1989).

    Google Scholar 

  14. C. H. Gochoco, F. M. Ryan, J. Miller, P. L. Smith, and I. J. Hidalgo. Uptake and transepithelial transport of the orally absorbed cephalosporin cephalexin in the human intestinal cell line, Caco-2. Int. J. Pharm. 104:187-202 (1994).

    Google Scholar 

  15. A. Tsuji. Intestinal absorption of β-lactam antibiotics, in Peptide-based drug design. Controlling transport and metabolism, M. D. Taylor and G. L. Amidon, Editors. 1995, American Chemical Society: Washington, D.C. pp. 101-34.

    Google Scholar 

  16. W. Kramer, F. Girbig, U. Gutjahr, and S. Kowalewski. The intestinal oligopeptide transporter: Molecular characterization and substrate specificity, in Peptide-based Drug Design, M. D. Taylor and G. L. Amidon, Editors. 1995, American Chemical Society: Washington. pp. 149-80.

    Google Scholar 

  17. A. Tsuji. Intestinal uptake of β-lactam antibiotics and its relationship to peptide transport. Adv. Biosci. 65:125-31 (1987).

    Google Scholar 

  18. M. E. Ganapathy, M. Brandsch, P. D. Prasad, V. Ganapathy, and F. H. Leibach. Differential recognition of β-lactam antibiotics by intestinal and renal peptide transporters, PEPT 1 and PEPT 2. J. Biol. Chem. 270:25672-7 (1995).

    Google Scholar 

  19. D. M. Oh, P. J. Sinko, and G. L. Amidon. Characterization of the oral absorption of some beta-lactams: effect of the alpha-amino side chain group. J. Pharm. Sci. 82:897-900 (1993).

    Google Scholar 

  20. T. Okano, K. Inui, H. Maegawa, M. Takano, and R. Hori. H+ coupled uphill transport of aminocephalosporins via the dipeptide transport system in rabbit intestinal brush-border membranes. J. Biol. Chem. 261:14130-4 (1986).

    Google Scholar 

  21. N. J. Snyder, L. B. Tabas, D. M. Berry, D. C. Duckworth, D. O. Spry, and A. H. Dantzig. Structure-activity relationship of carbacephalosporins and cephalosporins: antibacterial activity and interaction with the intestinal proton-dependent dipeptide transport carrier of Caco-2 cells. Antimicrob. Agents Chemother. 41:1649-57 (1997).

    Google Scholar 

  22. I. Tamai, N. Tomizawa, T. Takeuchi, K. Nakayama, H. Higashida, and A. Tsuji. Functional expression of transporter for beta-lactam antibiotics and dipeptides in Xenopus laevis oocytes injected with messenger RNA from human, rat and rabbit small intestines. J. Pharmacol. Exp. Ther. 273:26-31 (1995).

    Google Scholar 

  23. T. Bergan. Pharmacokinetic properties of the cephalosporins. Drugs 34:89-104 (1987).

    Google Scholar 

  24. D. I. Friedman and G. L. Amidon. Passive and carrier-mediated intestinal absorption components of two angiotensin converting enzyme (ACE) inhibitor prodrugs in rats: enalapril and fosinopril. Pharm. Res. 6:1043-7 (1989).

    Google Scholar 

  25. J. S. Kim, R. L. Oberle, D. A. Krummel, J. B. Dressman, and D. Fleisher. Absorption of ACE inhibitors from small intestine and colon. J. Pharm. Sci. 83:1350-6 (1994).

    Google Scholar 

  26. D. A. Johnson and G. L. Amidon. Determination of intrinsic membrane transport parameters from perfused intestine experiments: A boundary layer approach to estimating the aqueous and unbiased membrane permeabilities. J. Theor. Biol. 131:93-106 (1988).

    Google Scholar 

  27. G. L. Amidon, P. J. Sinko, and D. Fleisher. Estimating human oral fraction dose absorption: A correlation using rat intestinal membrane permeability for passive and carrier-mediated compounds. Pharm. Res. 5:651-4 (1988).

    Google Scholar 

  28. K. Inui, Y. Tomita, T. Katsura, T. Okano, M. Takano, and R. Hori. H+ coupled active transport of bestatin via the dipeptide transport system in rabbit intestinal brush-border membranes. J. Pharmacol. Exp. Ther. 260:482-6 (1992).

    Google Scholar 

  29. R. Hori, Y. Tomita, T. Katsura, M. Yasuhara, K. Inui, and M. Takano. Transport of bestatin in rat renal brush-border membrane vesicles. Biochem. Pharmacol. 45:1763-8 (1993).

    Google Scholar 

  30. E. Walter, T. Kissel, M. Reers, G. Dickneite, D. Hoffmann, and W. Stuber. Transepithelial transport properties of peptidomimetic thrombin inhibitors in monolayers of a human intestinal cell line (Caco-2) and their correlation to in vivo data. Pharm. Res. 12:360-5 (1995).

    Google Scholar 

  31. M. J. Humphrey and P. S. Ringrose. Peptides and related drugs: A review of their absorption, metabolism, and excretion. Drug Metab. Rev. 11:283-310 (1986).

    Google Scholar 

  32. E. C. Griffiths. Thyrotropin releasing hormone: endocrine and central effects. Psychoneuroendocrinology 10:225-35 (1985).

    Google Scholar 

  33. D. J. Ward, E. C. Griffiths, and B. Robson. Conformational study of thyrotrophin-releasing hormone. I. Aspects of importance in the design of novel TRH analogues. Int. J. Pept. Protein Res. 27:461-71 (1986).

    Google Scholar 

  34. E. C. Griffiths. Thyrotropin-releasing hormone. New applications in the clinic. Nature 322:212-3 (1986).

    Google Scholar 

  35. E. C. Griffiths. Clinical applications of thyrotropin-releasing hormone. Clin. Sci. 73:449-57 (1987).

    Google Scholar 

  36. E. Walter and T. Kissel. Transepithelial transport and metabolism of thyrotropin-releasing hormone (TRH) in monolayers of a human intestinal cell line (Caco-2): Evidence for an active transport component. Pharm. Res. 11:1575-80 (1994).

    Google Scholar 

  37. S. Yokohama, T. Yoshioka, K. Yamashita, and N. Kitamori. Intestinal absorption mechanism of thyrotropin-releasing hormone. J. Pharmacobiodyn. 7:445-51 (1984).

    Google Scholar 

  38. S. Yokohama, H. Yamashita, H. Toguchi, J. Takeuchi, and N. Kitamori. Absorption of thyrotropin-releasing hormone after oral administration of TRH tartrate monohydrate in the rat, dog and human. J. Pharmacobiodyn. 7:101-11 (1984).

    Google Scholar 

  39. K. Tanaka, T. Fujita, Y. Yamamoto, M. Murakami, A. Yamamoto, and S. Muranishi. Enhancement of intestinal transport of thyrotropin-releasing hormone via a carrier-mediated transport system by chemical modification with lauric acid. Biochim. Biophys. Acta 1283:119-26 (1996).

    Google Scholar 

  40. G. L. Amidon and H. J. Lee. Absorption of peptide and peptidomimetic drugs. Annu. Rev. Pharmacol. Toxicol. 34:321-41 (1994).

    Google Scholar 

  41. V. Ganapathy, M. Brandsch, and F. H. Leibach, Intestinal transport of amino acids and peptides, in Physiology of the gastrointestinal tract, L. R. Johnson, Editor. 1994, Raven Press: New York. pp. 1773-94.

    Google Scholar 

  42. M. Hu, P. Subramanian, H. I. Mosberg, and G. L. Amidon. Use of the peptide carrier system to improve the intestinal absorption of L-alpha-methyldopa: carrier kinetics, intestinal permeabilities, and in vitro hydrolysis of dipeptidyl derivatives of L-alpha-methyldopa. Pharm. Res. 6:66-70 (1989).

    Google Scholar 

  43. A. Tsuji, I. Tamai, M. Nakanishi, and G. L. Amidon. Mechanism of the absorption of the dipeptide α-methyldopa-phe in intestinal brush border membrane vesicles. Pharm. Res. 7:308-9 (1990).

    Google Scholar 

  44. M. A. Asgharnejad and G. L. Amidon. Improved oral delivery via the peptide transporter: a dipeptide prodrug of L-alpha-methyldopa. Pharm. Res. 9:S-248 (1992).

    Google Scholar 

  45. H. P. Wang, H. H. Lu, J. S. Lee, C. Y. Cheng, J. R. Mah, C. Y. Ku, W. Hsu, C. F. Yen, C. J. Lin, and H. S. Kuo. Intestinal absorption studies on peptide mimetic alpha-methyldopa prodrugs. J. Pharm. Pharmacol. 48:270-6 (1996).

    Google Scholar 

  46. H. K. Han, R. L. A. deVrueh, J. K. Rhie, K. M. Y. Covitz, P. L. Smith, C. P. Lee, D. M. Oh, W. Sadee, and G. L. Amidon. 5′-amino acid esters of antiviral nucleosides, acyclovir, and AZT are absorbed by the intestinal PEPT1 peptide transporter. Pharm. Res. 15:1154-9 (1998).

    Google Scholar 

  47. M. E. Ganapathy, W. Huang, H. Wang, V. Ganapathy, and F. H. Leibach. Valacyclovir: A substrate for the intestinal and renal peptide transporters PEPT1 and PEPT2. Biochem. Biophys. Res. Commun. 246:470-5 (1998).

    Google Scholar 

  48. W. Kramer, U. Gutjahr, F. Girbig, and I. Leipe. Intestinal absorption of dipeptides and β-lactam antibiotics. II Purification of the binding protein for dipeptides and β-lactam antibiotics from rabbit small intestinal brush border membranes. Biochim. Biophys. Acta 1030:50-9 (1990).

    Google Scholar 

  49. W. Kramer, F. Girbig, U. Gutjahr, S. Kowalewski, F. Adam, and W. Schiebler. Intestinal absorption of beta-lactam antibiotics and oligopeptides. Functional and stereospecific reconstitution of the oligopeptide transport system from rabbit small intestine. Eur. J. Biochem. 204:923-30 (1992).

    Google Scholar 

  50. W. Kramer, F. Girbig, U. Bewersdorf, S. Kohlrautz, and C. Weyland. Structural studies of the H+/oligopeptide transport system from rabbit small intestine. Biochim. Biophys. Acta 1373:179-94 (1998).

    Google Scholar 

  51. Y. Miyamoto, Y. G. Thompson, E. F. Howard, V. Ganapathy, and F. H. Leibach. Functional expression of the intestinal peptide-proton co-transporter in Xenopus laevis oocytes. J. Biol. Chem. 266:4742-5 (1991).

    Google Scholar 

  52. I. Tamai, N. Tomizawa, A. Kadowaki, T. Terasaki, K. Nakayama, H. Higashida, and A. Tsuji. Functional expression of intestinal dipeptide/beta-lactam antibiotic transporter in Xenopus laevis oocytes. Biochem. Pharmacol. 48:881-8 (1994).

    Google Scholar 

  53. H. Saito, T. Ishii, and K. Inui. Expression of human intestinal dipeptide transporter in Xenopus laevis oocytes. Biochem. Pharmacol. 45:776-9 (1993).

    Google Scholar 

  54. Y. J. Fei, Y. Kanai, S. Nussberger, V. Ganapathy, F. H. Leibach, M. F. Romero, S. K. Singh, W. F. Boron, and M. A. Hediger. Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature 368:563-6 (1994).

    Google Scholar 

  55. M. Boll, D. Markovich, W. M. Weber, H. Korte, H. Daniel, and H. Murer. Expression cloning of a cDNA from rabbit small intestine related to proton-coupled transport of peptides, beta-lactam antibiotics and ACE-inhibitors. Pflugers Arch. 429:146-9 (1994).

    Google Scholar 

  56. R. Liang, Y. J. Fei, P. D. Prasad, S. Ramamoorthy, H. Han, T. L. Yang-Feng, M. A. Hediger, V. Ganapathy, and F. H. Leibach. Human intestinal H6/peptide cotransporter. Cloning, functional expression, and chromosomal localization. J. Biol. Chem. 270:6456-63 (1995).

    Google Scholar 

  57. H. Saito, M. Okuda, T. Terada, S. Sasaki, and K. Inui. Cloning and characterization of a rat H6/peptide cotransporter mediating absorption of β-lactam antibiotics in the intestine and kidney. J. Pharmacol. Exp. Ther. 275:1631-7 (1995).

    Google Scholar 

  58. K. Miyamoto, T. Shiraga, K. Morita, H. Yamamoto, H. Haga, Y. Taketani, I. Tamai, Y. Sai, A. Tsuji, and E. Takeda. Sequence, tissue distribution and developmental changes in rat intestinal oligopeptide transporter. Biochim. Biophys. Acta 1305:34-8 (1996).

    Google Scholar 

  59. K. M. Covitz, G. L. Amidon, and W. Sadee. Human dipeptide transporter, hPEPT1, stably transfected into Chinese hamster ovary cells. Pharm. Res. 13:1631-4 (1996).

    Google Scholar 

  60. B. Mackenzie, D. D. Loo, Y. Fei, W. J. Liu, V. Ganapathy, F. H. Leibach, and E. M. Wright. Mechanisms of the human intestinal H+-coupled oligopeptide transporter hPEPT1. J. Biol. Chem. 271:5430-7 (1996).

    Google Scholar 

  61. A. K. Yeung, S. K. Basu, S. K. Wu, C. Chu, C. T. Okamoto, S. F. HammAlvarez, H. vonGrafenstein, W. C. Shen, K. J. Kim, M. B. Bolger, I. S. Haworth, D. K. Ann, and V. H. L. Lee. Molecular identification of a role for tyrosine 167 in the function of the human intestinal proton-coupled dipeptide transporter (hPepT1). Biochem. Biophys. Res. Commun. 250:103-7 (1998).

    Google Scholar 

  62. M. B. Bolger, I. S. Haworth, A. K. Yeung, D. Ann, H. vonGrafenstein, S. HammAlvarez, C. T. Okamoto, K. J. Kim, S. K. Basu, S. Wu, and V. H. L. Lee. Structure, function, and molecular modeling approaches to the study of the intestinal dipeptide transporter PepT1. J. Pharm. Sci. 87:1286-91 (1998).

    Google Scholar 

  63. F. Doring, J. Will, S. Amasheh, W. Clauss, H. Ahlbrecht, and H. Daniel. Minimal molecular determinants of substrates for recognition by the intestinal peptide transporter. J. Biol. Chem. 273:23211-8 (1998).

    Google Scholar 

  64. T. C. Freeman, B. S. Bentsen, D. T. Thwaites, and N. L. Simmons. H+/di-tripeptide transporter (PepT1) expression in the rabbit intestine. Pflugers Arch. 430:394-400 (1995).

    Google Scholar 

  65. W. Liu, R. Liang, S. Ramamoorthy, Y. J. Fei, M. E. Ganapathy, M. A. Hediger, V. Ganapathy, and F. H. Leibach. Molecular cloning of PEPT2, a new member of the H+/peptide cotransporter family, from human kidney. Biochim. Biophys. Acta 1235:461-6 (1995).

    Google Scholar 

  66. D. E. Gonzalez, K.-M. Y. Covitz, W. Sadee, and R. J. Mrsny. An oligopeptide transporter is expressed at high levels in the pancreatic cancinoma cell lines AsPc-1 and Capan-2. Cancer Res. 58:519-25 (1998).

    Google Scholar 

  67. N. Sonenberg. mRNA translation: influence of the 5′ and 3′ untranslated regions. Curr. Opin. Genet. Dev. 4:310-5 (1994).

    Google Scholar 

  68. N. Standart and R. J. Jackson. Regulation of translation by specific protein/mRNA interactions. Biochimie 76:867-79 (1994).

    Google Scholar 

  69. K. Iseki, K. Yonemura, T. Kikuchi, I. Naasani, M. Sugawara, M. Kobayashi, N. Kohri, and K. Miyazaki. Purification by ceftibutenaffinity chromatography and the functional reconstitution of oligo-peptide transporter(s) in rat intestinal brush-border membrane. Biochim. Biophys. Acta 1370:161-8 (1998).

    Google Scholar 

  70. H. Saito, H. Motohashi, M. Mukai, and K. Inui. Cloning and characterization of a pH-sensing regulatory factor that modulates transport activity of the human H+/peptide contransporter, PEPT1. Biochem. Biophys. Res. Commun. 237:577-82 (1997).

    Google Scholar 

  71. A. H. Dantzig, J. Hoskins, L. B. Tabas, S. Bright, R. L. Shepard, L. L. Jenkins, D. C. Duckworth, R. Sportsman, D. MacKensen, P. R. Rosteck, and P. L. Skatrud. Association of intestinal peptide transport with a protein related to the cadherin superfamily. Science 264:430-3 (1994).

    Google Scholar 

  72. K. Hofmann and W. Stoffel. TMbase—A database of membrane spanning proteins segments. Biol. Chem. Hoppe Seyler 347:166 (1993).

    Google Scholar 

  73. C. Y. Yang. Studies on the human intestinal di-/tripeptide transporer HPT-1 as a potential carrier for orally administered drugs. Thesis, Purdue University, West Lafayette, Indiana (1998).

    Google Scholar 

  74. M. Boll, M. Herget, M. Wagener, W. M. Weber, D. Markovich, J. Biber, W. Clauss, H. Murer, and H. Daniel. Expression cloning and functional characterization of the kidney cortex high-affinity proton-coupled peptide transporter. Proc. Natl. Acad. Sci. U.S.A. 93:284-9 (1996).

    Google Scholar 

  75. H. Saito, T. Terada, M. Okuda, S. Sasaki, and K. Inui. Molecular cloning and tissue distribution of rat peptide transporter PEPT2. Biochim. Biophys. Acta 1280:173-7 (1996).

    Google Scholar 

  76. F. Doring, D. Dorn, U. Bachfischer, S. Amasheh, M. Herget, and H. Daniel. Functional analysis of a chimeric mammalian peptide transporter derived from the intestinal and renal isoforms. J. Physiol. 497:773-9 (1996).

    Google Scholar 

  77. M. Brandsch, C. Brandsch, P. D. Prasad, V. Ganapathy, U. Hopfer, and F. H. Leibach. Identification of a renal cell line that constitutively expresses the kidney-specific high-affinity H6/peptide cotransporter. FASEB J. 9:1489-96 (1995).

    Google Scholar 

  78. C. Boyd, J. R. Bronk, and P. A. Helliwell. Stereospecificity of dipeptide transport in rat lung in situ. J. Physiol. (Lond.) 467:187P (1993).

    Google Scholar 

  79. D. Meredith and C. A. Boyd. Dipeptide transport characteristics of the apical membrane of rat lung type II pneumocytes. Am. J. Physiol. 269:L137-43 (1995).

    Google Scholar 

  80. P. A. Helliwell, D. Meredith, C. A. R. Boyd, J. R. Bronk, N. Lister, and P. D. Bailey. Tripeptide transport in rat lung. Biochim. Biophys. Acta 1190:430-4 (1994).

    Google Scholar 

  81. K. Morimoto, H. Yamahara, V. H. L. Lee, and K. J. Kim. Dipeptide transport across rat alveolar epithelial cell monolayers. Pharm. Res. 10:1668-74 (1993).

    Google Scholar 

  82. H. Wang, Y. J. Fei, V. Ganapathy, and F. H. Leibach. Electrophysiological characteristics of the proton-coupled peptide transporter PEPT2 cloned from rat brain. Am. J. Physiol. 275:C967-75 (1998).

    Google Scholar 

  83. S. T. Dieck, H. Heuer, J. Ehrchen, C. Otto, and K. Bauer. The peptide transporter PepT2 is expressed in rat brain and mediates the accumulation of the fluorescent dipeptide derivative beta-Ala-Lys-N-epsilon-AMCA in astrocytes. Glia 25:10-20 (1999).

    Google Scholar 

  84. T. Yamashita, S. Shimada, W. Guo, K. Sato, E. Kohmura, T. Hayakawa, T. Takagi, and M. Tohyama. Cloning and functional expression of a brain peptide/histidine transporter. J. Biol. Chem. 272:10205-11 (1997).

    Google Scholar 

  85. W. B. Frommer, S. Hummel, and D. Rentsch. Cloning of an Arabidopsis histidine transporting protein related to nitrate and peptide transporters. FEBS Lett. 347:185-9 (1994).

    Google Scholar 

  86. D. Rentsch, M. Laloi, I. Rouhara, E. Schmelzer, S. Delrot, and W. B. Frommer. NTR1 encodes a high affinity oligopeptide transporter in Arabidopsis. FEBS Lett. 370:264-8 (1995).

    Google Scholar 

  87. M. Vatish, D. Meredith, N. A. Reid, and N. Eleno. Peptide transport in human placental membrane vesicles. J. Physiol. 459:173P (1992).

    Google Scholar 

  88. Ganapathy and F. H. Leibach. Is intestinal peptide transport energized by a proton gradient? Am. J. Physiol. 249:G153-60 (1985).

    Google Scholar 

  89. D. Meredith and R. W. Laynes. Dipeptide transport in brush-border membrane vesicles (BBMV) prepared from human full-term placentae. Placenta 17:173-9 (1996).

    Google Scholar 

  90. R. C. Sharma, S. Inoue, J. Roitelman, R. T. Schimke, and R. D. Simon. Peptide transport by the multidrug resistance pump. J. Biol. Chem. 267:5731-4 (1992).

    Google Scholar 

  91. B. Sarkadi, M. Muller, and Z. Hollo. The multidrug transporters—proteins of an ancient immune system. Immunol. Lett. 54 (1996).

  92. S. Ruetz, M. Brault, W. Dalton, and P. Gros. Functional interactions between synthetic alkyl phospholipids and the ABC transporters P-glycoprotein, Ste-6, MRP, and Pgh 1. Biochemistry 36:8180-8 (1997).

    Google Scholar 

  93. M. D. Manson, V. Blank, G. Blade, and C. F. Higgins. Peptide chemotaxis in E. coli involves the Tap signal transducer and the dipeptide permease. Nature 321:253-6 (1986).

    Google Scholar 

  94. I. D. Hiles, L. M. Powell, and C. F. Higgins. Peptide transport in Salmonella typhimurium: molecular cloning and characterization of the oligopeptide permease genes. Mol. Gen. Genet. 206:101-9 (1987).

    Google Scholar 

  95. I. D. Hiles and C. F. Higgins. Peptide uptake by Salmonella typhimurium. The periplasmic oligopoptide-binding protein. Eur. J. Biochem. 158:561-7 (1986).

    Google Scholar 

  96. M. Perego, C. F. Higgins, S. R. Pearce, M. P. Gallagher, and J. A. Hoch. The oligopeptide transport system of Bacillus subtilis plays a role in the initiation of sporulation. Mol. Microbiol. 5:173-85 (1991).

    Google Scholar 

  97. C. Mathiopoulos, J. P. Mueller, F. J. Slack, C. G. Murphy, S. Patankar, G. Bukusoglu, and A. L. Sonenshein. A Bacillus subtilis dipeptide transport system expressed early during sporulation. Mol. Microbiol. 5:1903-13 (1991).

    Google Scholar 

  98. G. Alloning, M. C. Trombe, and J. P. Claverys. The ami locus of the gram-positive bacterium Streptococcus pneumoniae is similar to binding protein-dependent transport operons of gram-negative bacteria. Mol. Microbiol. 4:633-44 (1990).

    Google Scholar 

  99. E. R. Kunji, E. J. Smid, R. Plapp, B. Poolman, and W. N. Konings. Di-tripeptides and oligopeptides are taken up via distinct transport mechanisms in Lactococcus lactis. J. Bacteriol. 175:2052-9 (1993).

    Google Scholar 

  100. D. Z. Rudner, J. R. LeDeaux, K. Ireton, and A. D. Grossman. The spo0K locus of Bacillus subtilis is homologous to the oligopeptide permease locus and is required for sporulation and competence. J. Bacteriol. 173:1388-98 (1991).

    Google Scholar 

  101. Steiner, Henry-York, F. Naider, and J. M. Becker. The PTR family: a new group of peptide transporters. Mol. Microbiol. 16: 825-34 (1995).

    Google Scholar 

  102. R. C. Graul and W. Sadee. Sequence alignments of the H(6)-dependent oligopeptide transporter family PTR: inferences on structure and function of the intestinal PEPT1 transporter. Pharm. Res. 14:388-400 (1997).

    Google Scholar 

  103. I. T. Paulsen and R. A. Sieurray. The POT family of transport proteins. Trends Biochem. Sci 19:404 (1994).

    Google Scholar 

  104. R. Liang, Y. J. Fei, P. D. Prasad, S. Ramamoorthy, H. Han, T. L. Yang-Feng, M. A. Hediger, V. Ganapathy, and F. H. Leibach. Human intestinal H6/peptide cotransporter. Cloning, functional expression, and chromosomal localization. J. Biol. Chem. 270:6456-63 (1995).

    Google Scholar 

  105. H. Y. Steiner, W. Song, L. Zhang, F. Naider, J. M. Becker, and G. Stacey. An Arabidopsis peptide transporter is a member of a new class of membrane transport proteins. Plant Cell 6: 1289-99 (1994).

    Google Scholar 

  106. N. C. Huang, C. S. Chiang, N. M. Crawford, and Y. F. Tsay. CHL1 encodes a component of the low-affinity nitrate uptake system in Arabidopsis and shows cell type-specific expression in roots. Plant Cell 8:2183-91 (1996).

    Google Scholar 

  107. J. R. Perry, M. A. Basrai, H.-Y. Steiner, F. Naider, and J. M. Becker. Isolation and characterization of a Saccharomyces cerevisiae peptide transporter gene. Mol. Cell Biol. 14: 104-15 (1994).

    Google Scholar 

  108. M. A. Basrai, M. A. Lubkowitz, J. R. Perry, D. Miller, E. Krainer, F. Naider, and J. M. Becker. Cloning of a Candida albicans peptide transport gene. Microbiology 141:1147-56 (1995).

    Google Scholar 

  109. A. Hagting, E. R. Kunji, K. J. Leenhouts, B. Poolman, and W. N. Konings. The di-and tripeptide transport protein of Lactococcus lactis. A new type of bacterial peptide transporter. J. Biol. Chem. 269:11391-9 (1994).

    Google Scholar 

  110. A. Hagting, J. Knol, B. Hasemeier, M. R. Streutker, G. Fang, B. Poolman, and W. N. Konings. Amplified expression, purification and functional reconstitution of the dipeptide and tripeptide transport protein of Lactococcus lactis. Eur. J. Biochem. 247:581-7 (1997).

    Google Scholar 

  111. A. Hagting, J. v.d. Velde, B. Poolman, and W. N. Konings. Membrane topology of the di-and tripeptide transport protein of Lactococcus lactis. Biochemistry 36:6777-85 (1997).

    Google Scholar 

  112. S. Beck, A. Kelly, E. Radley, F. Khurshid, R. P. Alderton, and J. Trowsdale. DNA sequence analysis of 66 kb of the human MHC class II region encoding a cluster of genes for antigen processing. J. Mol. Biol. 228:433-41 (1992).

    Google Scholar 

  113. W. N. Abouhamad, M. Manson, M. M. Gibson, and C. F. Higgins. Peptide transport and chemotaxis in Escherichia coli and Salmonella typhimurium: characterization of the dipeptide permease (Dpp) and the dipeptide-binding protein. Mol. Microbiol. 5:1035-47 (1991).

    Google Scholar 

  114. W. N. Abouhamad and M. D. Manson. The dipeptide permease of Escherichia coli closely resembles other bacterial transport systems and shows growth-phase-dependent expression. Mol. Microbiol. 14:1077-92 (1994).

    Google Scholar 

  115. K. Kashiwagi, Y. Yamaguchi, Y. Sakai, H. Kobayashi, and K. Igarashi. Identification of the polyamine-induced protein as a periplasmic oligopeptide binding protein. J. Biol. Chem. 265:8387-91 (1990).

    Google Scholar 

  116. S. Tynkkynen, G. Buist, E. Kunji, J. Kok, B. Poolman, G. Venema, and A. Haandrikman. Genetic and biochemical characterization of the oligopeptide transport system of Lactococcus lactis. J. Bacteriol. 175:7523-32 (1993).

    Google Scholar 

  117. I. D. Hiles, M. P. Gallagher, D. J. Jamieson, and C. F. Higgins. Molecular characterization of the oligopeptide permease of Salmonella typhimurium. J. Mol. Biol. 195:125-42 (1987).

    Google Scholar 

  118. J. P. F. Bai and G. L. Amidon. Structural specificity of mucosal-cell transport and metabolism of peptide drugs: Implication for oral peptide drug delivery. Pharm. Res. 9:969-78 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne H. Dantzig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, C.Y., Dantzig, A.H. & Pidgeon, C. Intestinal Peptide Transport Systems and Oral Drug Availability. Pharm Res 16, 1331–1343 (1999). https://doi.org/10.1023/A:1018982505021

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018982505021

Navigation