Skip to main content
Log in

Prolonged Systemic Delivery of Peptide Drugs by Long-Circulating Liposomes: Illustration with Vasopressin in the Brattleboro Rat

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The value of novel systemically long-circulating liposomes to prolong the duration of an antidiuretic hormone, arg8-vasopressin (VP), was investigated as a representative of low molecular weight pep-tides with rapid clearance. Cholesterol content was found to have a controlling effect on VP release in serum. Three types of liposomes were selected for urine production measurements in VP deficient Brattleboro rats. One contained phosphatidylserine (PS), which was rapidly cleared from the circulation. In the other two liposomes, the PS component was replaced by either phosphatidylglycerol or a novel phospholipid derivatized with polyethylene glycol (PEG); both showing prolonged circulation. Free VP (up to 8 µg/kg) gave reduced urine production for less than 24 hr. The PG formulation exhibited a dose-dependent prolonged duration of bioactivity of up to 4 days. Substitution of PEG-PE resulted in a 2-day delay followed by a prolonged duration of bioactivity for over 4 days. The duration of the prolonged bioactivity was not dose dependent but the amplitude was. This is attributed to VP release from liposomes which have distributed intact to another compartment without having been taken up by the RES. By balancing liposome circulation time, release rate, and dose, long-circulating liposomes can be applied to prolong the biological activity of a therapeutic peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. V. H. L. Lee. Peptide and protein drug delivery: Opportunities and challenges. Pharm. Int. 7:208–212 (1986).

    Google Scholar 

  2. A. L. Weiner. Liposomes as carriers for polypeptides. Adv. Drug Del. Rev. 3:307–341 (1989).

    Google Scholar 

  3. G. Storm and D. J. A. Crommelin. Liposomes as carriers for therapeutic proteins. Biother. (in press).

  4. J. H. Senior. Fate and behavior of liposomes in vivo: A review of controlling factors. CRC Crit. Rev. Ther. Drug Carrier Syst. 3:123–193 (1987).

    Google Scholar 

  5. U. K. Nässander, G. Storm, P. A. M. Peeters, and D. J. A. Crommelin. In M. Chasin and R. Langer (eds.), Biodegradable Polymers as Drug Delivery Systems, M. Dekker, New York, 1990, pp. 261–338.

    Google Scholar 

  6. T. M. Allen and A. Chonn. Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS Lett. 223:42–46 (1987).

    Google Scholar 

  7. A. Gabizon and D. Papahadjopoulos. Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc. Natl. Acad. Sci. USA 85:6949–6953 (1988).

    Google Scholar 

  8. T. M. Allen. Stealth™ liposomes: Avoiding reticuloendothelial uptake in liposomes. In G. Lopez-Berestein and I. J. Fidler (eds.), The Therapy of Infectious Diseases and Cancer, Alan R. Liss, New York, 1989, pp. 405–415.

    Google Scholar 

  9. G. Blume and G. Cevc. Liposomes for the sustained drug release in vivo. Biochim. Biophys. Acta 1029:91–97 (1990).

    Google Scholar 

  10. A. L. Klibanov, K. Maruyama, V. P. Torchillin, and L. Huang. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 268:235–237 (1990).

    Google Scholar 

  11. M. C. Woodle, M. Newman, L. Collins, C. Redemann, and F. Martin. Improved long circulating (Stealth®) liposomes using synthetic lipids. Proc. Int. Symp. Control. Rel. Bioact. Mater. 17:77–78 (1990).

    Google Scholar 

  12. J. Senior, C. Delgado, D. Fisher, C. Tilcock, and G. Gregoriadis. Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: Studies with poly(ethylene glycol)-coated vesicles. Biochim. Biophys. Acta 1062:77–82 (1991).

    Google Scholar 

  13. D. Papahadjopoulos, T. Allen, A. Gabizon, E. Mayhew, K. Matthay, S. K. Huang, K.-D. Lee, M. C. Woodle, D. D. Lasic, C. Redemann, and F. J. Martin. Sterically stabilized liposomes: Improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc. Natl. Acad. Sci. USA (in press) (1991).

  14. M. C. Woodle, K. K. Matthay, M. S. Newman, J. E. Hidayat, L. R. Collins, C. Redemann, F. J. Martin, and D. Papahadjopoulos. Versatile liposome compositions showing prolonged circulation with steric stabilization (submitted for publication) (1991).

  15. M. C. Woodle and D. D. Lasic. Sterically stabilized liposomes. (submitted for publication) (1992).

  16. H. Valtin and H. A. Schroeder. Familial hypothalamic diabetes insipidus in rats (Brattleboro strain). Am. J. Physiol. 206:425 (1964).

    Google Scholar 

  17. J. Kruisbrink and G. J. Boer. Controlled long-term release of small peptide hormones using a new microporous polypropylene polymer: Its application for VP in the Brattleboro rat and potential perinatal use. J. Pharm. Sci. 73:1713–1718 (1984).

    Google Scholar 

  18. H. V. Maulding. Prolonged delivery of peptides by microcapsules. J. Control. Release 6:167–176 (1987).

    Google Scholar 

  19. W. H. Sawyer and M. Manning. Effective antagonists of the antidiuretic action of vasopressin in rats. Ann. N.Y. Acad. Sci. 394:464–472 (1982).

    Google Scholar 

  20. F. Szoka and D. Papahadjopoulos. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc. Natl. Acad. Sci. USA 75:4194–4198 (1978).

    Google Scholar 

  21. F. Olson, C. A. Hunt, F. C. Szoka, W. J. Vail, and D. Papahadjopoulos. Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim. Biophys. Acta 557:9 (1979).

    Google Scholar 

  22. D. C. Klonoff and J. H. Karam. Hypothalamic and pituitary hormones. In B. G. Katzung (ed.), Basic and Clinical Pharmacology, 3rd ed., Appleton and Large, Los Altos, CA, 1987, pp. 423–435.

    Google Scholar 

  23. F. C. Szoka. Liposome drug delivery. In J. Wilschut and D. Hoekstra (eds.), Membrane Fusion, Marcel Dekker, New York, 1991, pp. 845–890.

    Google Scholar 

  24. J. T. P. Derksen, H. W. M. Morselt, and G. L. Scherphof. Uptake and processing of immunoglobulin-coated liposomes by subpopulations of rat liver macrophages. Biochim. Biophys. Acta 971:127–136 (1988).

    Google Scholar 

  25. B. Mohring and J. Mohring. Plasma ADH in normal and Long Evans rats and in Long Evans rats heterozygous and homozygous for hypothalamic diabetes insipidus. Life Sci. 17:1307–1314 (1975).

    Google Scholar 

  26. L. E. Cornett, S. M. Breckinridge, and T. I. Loike. Induction of V2 receptors in renal medulla of homozygous Brattleboro rats by arginine vasopressin. Peptides 10:985–991 (1989).

    Google Scholar 

  27. S. M. Gardiner, A. M. Compton, and T. Bennett. Regional haemodynamic effects of vasopressin infusion in conscious, unrestrained, Brattleboro rats. Br. J. Pharmacol. 97:147–152 (1989).

    Google Scholar 

  28. C. J. Chu. Enhanced Cytoplasmic Delivery of Liposome Encapsulated Drugs, Ph.D. thesis, University of California, San Francisco, 1990.

  29. A. Gabizon, R. Shiota, and D. Papahadjopoulos. Pharmacokinetics and tissue distribution of doxorubicin encapsulated in stable liposomes with long circulation times. J. Natl. Cancer Inst. 81:1484–1488 (1990).

    Google Scholar 

  30. K. Maruyama, S. J. Kennel, and L. Huang. Liposome composition is important for highly efficient target binding and retention of immunoliposomes. Proc. Natl. Acad. Sci. USA 87:5744–5748 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woodle, M.C., Storm, G., Newman, M.S. et al. Prolonged Systemic Delivery of Peptide Drugs by Long-Circulating Liposomes: Illustration with Vasopressin in the Brattleboro Rat. Pharm Res 9, 260–265 (1992). https://doi.org/10.1023/A:1018953810705

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018953810705

Navigation