Skip to main content
Log in

Structural Specificity of Mucosal-Cell Transport and Metabolism of Peptide Drugs: Implication for Oral Peptide Drug Delivery

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The brush border membrane of intestinal mucosal cells contains a peptide carrier system with rather broad substrate specificity and various endo- and exopeptidase activities. Small peptide (di-/ tripeptide)-type drugs with or without an N-terminal α-amino group, including β-lactam antibiotics and angiotensin-converting enzyme (ACE) inhibitors, are transported by the peptide transporter. Poly-peptide drugs are hydrolyzed by brush border membrane proteolytic enzymes to di-/tripeptides and amino acids. Therefore, while the intestinal brush border membrane has a carrier system facilitating the absorption of di-/tripeptide drugs, it is a major barrier limiting oral availability of polypeptide drugs. In this paper, the specificity of peptide transport and metabolism in the intestinal brush border membrane is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. S. A. Adibi and E. Phillips. Evidence for greater absorption of amino acid from peptide than from free form by human intestine. Clin. Res. 16:446–448 (1968).

    Google Scholar 

  2. D. M. Matthews and J. W. Payne. Transmembrane transport of small peptides. In Current Topics in Membrane and Transport, Academic Press, New York, 1980, Vol. 14, pp. 331–425.

    Google Scholar 

  3. D. I. Friedman and G. L. Amidon. Intestinal absorption mechanism of two prodrug ACE inhibitors in rats: Enalapril maleate and fosinopril sodium. Pharm. Res. 6:1043–1047 (1989).

    Google Scholar 

  4. D. I. Friedman and G. L. Amidon. The intestinal absorption mechanism of dipeptide ACE inhibitors of the lysyl-proline type: Lisinopril and SQ 29,852. J. Pharm. Sci. 78:995 (1989).

    Google Scholar 

  5. M. Hu and G. L. Amidon. Passive and carrier-mediated intestinal absorption components of captopril. J. Pharm. Sci. 77:1007–1011 (1988).

    Google Scholar 

  6. P. J. Sinko and G. L. Amidon. Characterization of the oral absorption of β-lactam antibiotics. I. Cephalosporins. Determination of intrinsic membrane absorption parameters in the rat intestine in situ. Pharm. Res. 5:645–650 (1988).

    Google Scholar 

  7. P. J. Sinko and G. L. Amidon. Characterization of the oral absorption of β-lactam antibiotics. II. Competitive absorption and peptide carrier specificity. J. Pharm. Sci. 78:723–726 (1989).

    Google Scholar 

  8. A. Tsuji, T. Terasaki, I. Tamai, and H. Hirooka. H+-gradient-dependent and carrier-mediated transport of cefixime, a new cephalosporin antibiotic, across brush-border membrane vesicles from rat small intestine. J. Pharmacol. Exp. Ther. 241:594–601 (1987).

    Google Scholar 

  9. S. A. Adibi and Y. S. Kim. Peptide absorption and hydrolysis. In L. R. Johnson (ed.), Physiology of the Gastrointestinal Tract, 1st ed., Raven Press, New York, 1981, p. 1073.

    Google Scholar 

  10. V. H. L. Lee, S. Dodda-Kashi, G. M. Grass, and W. Rubas. Oral route of peptide and protein drug delivery. In V. H. L. Lee (ed.), Peptide and Protein Drug Delivery, Marcel Dekker, New York, 1991, pp. 691–738.

    Google Scholar 

  11. M. Saffran, C. Bedra, G. S. Kumar, and D. C. Neckers. Vaspressin: A model for the study of effects of additives on the oral and rectal administration of peptide drugs. J. Pharm. Sci. 77:33–38 (1988).

    Google Scholar 

  12. K. Takaori, J. Burton, and M. Donawitz. The transport of an intact oligopeptide across adult mammalian jejunum. Biochem. Biophys. Res. Comm. 137:682–687 (1986).

    Google Scholar 

  13. A. J. Wood, G. Maurer, W. Niederberger, and T. Beveridge. Cyclosporine: Pharmacokinetics, metabolism, and drug interactions. Transplant. Proc. 15:2409 (1983).

    Google Scholar 

  14. M. Kidron, H. Bar-On, E. M. Berry, and E. Ziv. The absorption of insulin from various regions of the rat intestine. Life Sci. 31:2937–2841 (1982).

    Google Scholar 

  15. C. A. R. Boyd and M. R. Ward. A micro-electrode study of oligopeptide absorption by the small intestinal epithelium of Necturus maculosus. J. Physiol. 324:411–428 (1982).

    Google Scholar 

  16. J. M. Addison, D. Burston, J. W. Payne, S. Wilkison, and D. M. Matthews. Evidence for active transport of tripeptides by hamster jejunum in vitro. Clin. Sci. Mol. Med. 49:305–312 (1975).

    Google Scholar 

  17. W. Kramer, U. Gutjahr, F. Girbig, and I. Leipe. Intestinal absorption of dipeptides and β-lactam antibiotics. II. purification of the binding protein for dipeptides and β-lactam antibiotics from rabbit small intestinal brush border membrane. Biochim. Biophys. Acta 1030:50–55 (1990).

    Google Scholar 

  18. V. Ganapathy and F. H. Leibach. Is intestinal peptide transport energized by a proton gradient? Am. J. Physiol. 249:G153–G160 (1985).

    Google Scholar 

  19. J. M. Addison, D. M. Matthews, and D. Burston. Evidence for active transport of the dipeptide carnosine (β-alanyl-L-histidine) by hamster jejunum in vitro. Clin. Sci. Mol. Med. 46:707–714 (1974).

    Google Scholar 

  20. M. Das and A. N. Radhakrishnan. Studies on a wide-spectrum intestinal dipeptide uptake system in the monkey and in the human. Biochem. J. 146:133–139 (1975).

    Google Scholar 

  21. A. Rubino, M. Field, and H. Schwachman. Intestinal transport of amino acid residues of dipeptides. I. Influx of the glycine residue of glycyl-L-proline across mucosal border. J. Biol. Chem. 246:3542–3548 (1971).

    Google Scholar 

  22. J. M. Addison, D. Burston, J. A. Dalrymple, D. M. Matthews, J. W. Payne, M. H. Sleisenger, and S. Wilkinson. A common mechanism for transport of di-and tripeptides by hamster jejunum in vitro. Clin. Sci. Mol. Med. 49:313–322 (1975a).

    Google Scholar 

  23. Y. Tomita, T. Katsura, T. Okano, K. I. Inui, and R. Hori. Transport mechanisms of bestatin in rabbit intestinal brushborder membrane: Role of H+/dipeptide cotransport system. J. Pharmacol. Exp. Ther. 252:859–862 (1990).

    Google Scholar 

  24. P. F. Bai, P. Subramanian, H. I. Mosberg, and G. L. Amidon. Structural requirements for the intestinal mucosal cell peptide transporter: The need for N-terminal α-amino group. Pharm. Res. 8:593–599 (1991).

    Google Scholar 

  25. V. M. Rajendran, S. A. Ansari, J. M. Harig, M. B. Adams, A. H. Khan, and K. Ramaswamy. Transport of glycyl-L-proline by human intestinal brush border membrane vesicles. Gastroenterology 89:1298–1304 (1985).

    Google Scholar 

  26. A. M. Asatoor, A. Chadha, M. D. Milne, and D. I. Prosser. Intestinal absorption of stereoisomers of dipeptides in the rat. Clin. Sci. Mol. Med. 45:199–212 (1973).

    Google Scholar 

  27. C. I. Cheeseman and D. H. Smyth. Specific transfer process for intestinal absorption of peptides. Pro. Physiol. Soc. Nov:45p–46p (1972).

  28. D. Burston, J. M. Addison, and D. M. Matthews. Uptake of dipeptides containing basic and acidic amino acids by rat small intestine in vitro. Clin. Sci. 43:823–837 (1972).

    Google Scholar 

  29. D. M. Oh, P. J. Sinko, and G. L. Amidon. Characterization of the oral absorption of some penicillins: Determination of intrinsic membrane absorption parameters in the intestine in situ. Pharm. Res. 6:S-91 (1989).

    Google Scholar 

  30. D. M. Oh, P. J. Sinko, and G. L. Amidon. Peptide transport of β-lactam antibiotics: structural requirements for an α-amino group. Pharm. Res. 7:S-119 (1990).

    Google Scholar 

  31. A. Tsuji, H. Hirooka, I. Tamai, and T. Terasaki. Evidence for a carrier-mediated transport system in the small intestine available for FK089, a new cephalosporin antibiotic without an amino group. J. Antibio. 39:1592–1597 (1986).

    Google Scholar 

  32. I. Tamai, H. Y. Ling, S. M. Timbul, J. Nishikido, and A. Tsuji. Stereospecific absorption and degradation of cephalexin. J. Pharm. Pharmacol. 40:320–324 (1988).

    Google Scholar 

  33. S. Yee and G. L. Amidon. Intestinal absorption mechanism of three angiotensin-converting enzyme inhibitors: Quinapril, benazeprdil and CGS16617. Pharm. Sci. 7:S-155 (1990).

    Google Scholar 

  34. S. Yokohama, T. Yoshioka, K. Yamashita, and N. J. Kitamori. Intestinal absorption mechanisms of thyrotropin-releasing hormone. Pharm. Dyn. 7:445–451 (1984).

    Google Scholar 

  35. M. J. Humphrey and P. S. Ringrose. Peptides and related drugs: A review of their absorption, metabolism, and excretion. Drug Metab. Rev. 17:283–310 (1986).

    Google Scholar 

  36. W. Kramer, F. Girbig, U. Gutjahr, H. W. Kleemann, I. Leipe, H. Urbach, and A. Wagner. Interaction of renin inhibitors with the intestinal uptake system for oligopeptides and β-lactam antibiotics. Biochim. Biophys. Acta 1027:25–30 (1990).

    Google Scholar 

  37. B. G. Munck. Intestinal absorption of amino acids. In L. R. Johnson (ed.), Physiology of the Gastrointestinal Tract, Raven Press, New York, 1981, p. 1097.

    Google Scholar 

  38. G. Esposito. In T. Z. Csaky (ed.), Pharmacology of Intestinal Permeation I, Springer-Verlag, Berlin, Heidelberg, 1984, p. 567.

    Google Scholar 

  39. D. N. Wade, P. T. Mearrick, and J. I. Morris. Active transport of L-dopa in the intestine. Nature 242:463–465 (1972).

    Google Scholar 

  40. M. Hu, P. Subramanian, H. I. Mosberg, and G. L. Amidon. Use of the peptide carrier system to improve intestinal absorption of L-α-methyldopa: Carrier kinetics, intestinal permeabilities, and in vitro hydrolysis of dipeptidyl derivatives of L-α-methyldopa. Pharm. Res. 6:66–70 (1989).

    Google Scholar 

  41. M. Merino, I. L. Peris-Ribera, F. Torres-Molina, A. Sánchez-Picó, M. C. García-Carbonell, V. G. Casabó, A. Martín-Villodre, and J. M. Plaá-Delfina. Evidence for a specialized transport mechanism for the intestinal absorption of baclofen. Biopharm. Drug Dispos. 10:279–297 (1989).

    Google Scholar 

  42. A. E. Merfeld, A. R. Mlodozeniec, M. A. Cortese, J. B. Rhodes, J. B. Dressman, and G. L. Amidon. The effect of pH and concentration on α-methyldopa absorption in man. J. Pharm. Pharmacol. 38:815–822 (1986).

    Google Scholar 

  43. N. Border, K. B. Sloan, and T. Higuchi. Improved delivery through biological membrane. 4. Prodrugs of L-dopa. J. Med. Chem. 20:1435–1445 (1977).

    Google Scholar 

  44. D. Burston, J. M. Addison, and D. M. Matthews. Uptake of dipeptides containing basic and acidic amino acids by rat small intestine in vitro. Clin. Sci. 43:823–837 (1972).

    Google Scholar 

  45. P. F. Bai, M. Hu, P. Subramanian, H. I. Mosberg, and G. L. Amidon. Utilization of peptide carrier system to improve the intestinal absorption: Targeting prolidase as a prodrug converting enzyme. J. Pharm. Sci. 80:1–4 (1991b).

    Google Scholar 

  46. Y. S. Kim. Intestinal mucosal hydrolysis of proteins and peptides. In K. Elliot and M. O'Connor (eds.), Peptide Transport and Hydrolysis, Ciba Foundation Symposium, Associated Scientific, Amsterdam, 1977, p. 151.

    Google Scholar 

  47. E. E. Sterchi and J. F. Woodley. Peptide hydrolases of the human small intestinal mucosa: Distribution of activities between brush border membranes and cytosol. Clin. Chim. Acta 102:49–56 (1980).

    Google Scholar 

  48. S. Miura, I. S. Song, A. Morita, R. H. Erickson, and Y. S. Kim. Distribution and biosynthesis of aminopeptidase N and dipeptidyl aminopeptidase IV in rat small intestine. Biochim. Biophys. Acta 761:66–75 (1983).

    Google Scholar 

  49. T. Q. Garvey, P. E. Hyman, and K. J. Isselbacher. γ-Glutamyl transpeptidase of rat intestine: Localization and possible role in amino acid transport. Gastroenterology 71:778–785 (1976).

    Google Scholar 

  50. M. Yoshioka, R. H. Erickson, J. F. Woodley, R. Gulli, D. Guan, and Y. S. Kim. Role of rat intestinal brush-border membrane angiotensin-converting enzyme in dietary protein digestion. Am. J. Physiol. 253:G781–G786 (1987).

    Google Scholar 

  51. H. Skovbjerg. Immunoelectrophoretic studies on human small intestinal brush border proteins—the longitudinal distribution of peptidases and disaccharidases. Clin. Chim. Acta 112:205–212 (1981).

    Google Scholar 

  52. N. Triadou, J. Bataille, and J. Schmitz. Longitudinal study of the human intestinal brush border membrane proteins: Distribution of the main disacharidases and peptidases. Gastroenterology 85:1326–1332 (1983).

    Google Scholar 

  53. S. Auricchio, L. Greco, B. D. G. Vizia, and V. Buonocore. Dipeptidylaminopeptidase and carboxypeptidase activities of the brush border of rabbit small intestine. Gastroenterology 75:1073–1079 (1978).

    Google Scholar 

  54. R. K. Kania, N. A. Santiago, and G. M. Gray. Intestinal surface amino-oligopeptidases. II. Substrate kinetics and topography of the active site. J. Biol. Chem. 252:4929–4934 (1977).

    Google Scholar 

  55. A. J. Kenny and S. Maroux. Topology of microvillar membrane hydrolases of kidney and intestine. Physiol. Rev. 62:91–128 (1982).

    Google Scholar 

  56. Y. S. Kim and E. J. Brophy. Rat intestinal brush border membrane peptidases. I. Solubilization, purification, and physicochemical properties of two different forms of the enzyme. J. Biol. Chem. 251:3199–3205 (1976).

    Google Scholar 

  57. Y. S. Kim, E. J. Brophy, and J. A. Nicholson. Rat intestinal brush border membrane peptidases. II. Enzymatic properties, immunochemistry and interactions with lectins of two different forms of the enzyme. J. Biol. Chem. 251:3206–3212 (1976).

    Google Scholar 

  58. S. T. Suresh. Microvillus membrane peptidases that catalyze hydrolysis of cysteinylglycine and its derivatives. In Methods in Enzymology, Academic Press, New York, 1985, Vol. 113, p. 471.

    Google Scholar 

  59. D. I. Friedman and G. L. Amidon. Oral absorption of peptides: Influence of pH and inhibitors on the intestinal hydrolysis of leu-enkephalin and analogues. Pharm. Res. 8:93–96 (1991).

    Google Scholar 

  60. N. Tobey, W. Heizer, R. Yeh, T. I. Huang, and C. Hoffner. Human intestinal brush border peptidases. Gastroenterology 88:913–926 (1985).

    Google Scholar 

  61. R. Walter, W. H. Simmons, and T. Yoshimoto. Proline specific endo-and exopeptidases. Mol. Cell. Biochem. 30:111–127 (1980).

    Google Scholar 

  62. B. Svensson, M. Danielsen, M. Staun, L. Jeppesen, O. Noren, and H. Sjostrom. An amphiphilic form of dipeptidyl peptidase IV from pig small-intestinal brush-border membrane. Eur. J. Biochem. 90:489–498 (1978).

    Google Scholar 

  63. J. Lasch, R. Koelsch, A. M. Ladhoff, and B. Hartrodt. Is the proline-specific aminopeptidase P of the intestinal brush border an integral membrane enzyme? Biomed. Biochim. Acta 45:833–843 (1986).

    Google Scholar 

  64. E. J. Holtzman, G. Pillay, T. Rosenthal, and A. Yaron. Aminopeptidase P activity in rat organs and human serum. Anal. Biochem. 162:476–484 (1987).

    Google Scholar 

  65. J. Lasch, R. Koelsch, T. Steinmetzer, U. Neumann, and H. U. Demuth. Enzymic properties of intestinal aminopeptidase P: A new continuous assay. FEBS 227:171–174 (1988).

    Google Scholar 

  66. W. Sidorowicz, J. Szechinski, P. C. Canizaro, and F. J. Behal. Cleavage of the Arg1-Pro2 bond of bradykinin by a human lung peptidase: Isolation, characterization, and inhibition by several β-lactam antibiotics (41828). Proc. Soc. Exp. Biol. Med. 175:503–509 (1984).

    Google Scholar 

  67. M. Yoshioka, R. H. Erickson, and Y. S. Kim. Digestion and assimilation of proline-containing peptides by rat intestinal brush border membrane carboxypeptidases. J. Clin. Invest. 81:1090–1095 (1988).

    Google Scholar 

  68. B. R. Stevens, A. Fernandez, C. Kneer, J. J. Cerda, M. I. Phillips, and E. R. Woodward. Human intestinal brush border angiotensin-converting enzyme activity and its inhibition by antihypertensive ramipril. Gastroenterology 94:942–947 (1988).

    Google Scholar 

  69. H. Yokosawa, S. Endo, Y. Ohgaki, J. I. Maeyama, and S. I. Ishii. Hydrolysis of substance p and its analogs by angiotensin-converting enzyme from rat lung: Characterization of endopeptidase activity of the enzyme. J. Biochem. 98:1293–1299 (1985).

    Google Scholar 

  70. E. M. Danielsen, J. P. Vyas, and A. J. Kenny. A neutral endopeptidase in the microvillar membrane of pig intestine. Biochem. J. 191:645–648 (1980).

    Google Scholar 

  71. N. W. Bunnett, A. J. Turner, J. Hryszko, R. Kobayashi, and J. H. Walsh. Isolation of endopeptidase-24.11 (EC 3.4.24.11, “enkephalinase”) from the pig stomach. Gastroenterology 95:952–957 (1988).

    Google Scholar 

  72. R. A. Skidgel and E. G. Erdös. Novel activity of human angiotensin I converting enzyme: Release of the NH2-and COOH-terminal tripeptides from the luteininzing hormone-releasing hormone. Proc. Natl. Acad. Sci. 82:1025–1029 (1985).

    Google Scholar 

  73. C. Doumeng and S. Maroux. Aminopeptidase, a cytosol enzyme from rabbit intestinal mucosa. Biochem. J. 177:801–808 (1979).

    Google Scholar 

  74. F. Endo, I. Matsuda, A. Ogata, and S. Tanaka. Human erythrocyte prolidase and prolidase deficiency. Pediat. Res. 16:227–231 (1982).

    Google Scholar 

  75. G. Mano, P. Nassi, G. Cappugi, G. Camici, and G. Ramponi. Swine kidney prolidase: Assay, isolation procedure, and molecular properties. Physiol. Chem. Phys. 4:75–87 (1972).

    Google Scholar 

  76. H. Sjöström and O. Norén. Structural properties of pig intestinal proline dipeptidase. Biochim. Biophys. Acta 359:177–185 (1974).

    Google Scholar 

  77. T. Yoshimoto, F. Matsubara, E. Kawano, and D. Tsuru. Prolidase from bovine intestine: Purification and characterization. J. Biochem. 94:1889–1896 (1983).

    Google Scholar 

  78. L. N. Lin and J. F. Brandts. Evidence suggesting that some proteolytic enzymes may cleave only the trans form of the peptide bond. Biochemistry 18:43–47 (1979).

    Google Scholar 

  79. I. Myara, C. Charpentier, and A. Lemonnier. Minireview: Prolidase and prolidase deficiency. Life Sci. 34:1985–1998 (1984).

    Google Scholar 

  80. J. F. Lenney, P. W. H. Chan, R. P. George, C. M. Kucera, G. S. Rinzler, and A. M. Weiss. (1982). Human-serum carnosinase, and activation by cadmium. Clin. Chim. Acta 123:221–231 (1982).

    Google Scholar 

  81. J. F. Lenney, R. P. George, S. C. Peppers, and C. M. Kuceraorallo. Characterization of human-tissue carnosine. Biochem. J. 228:653–660 (1985).

    Google Scholar 

  82. S. C. Peppers and J. Lenney. Bestatin inhibition of human tissue carnosinase, a non-specific cytosolic dipeptidase. Biol. Chem. Hoppe-Seyler 368:1281–1286 (1988).

    Google Scholar 

  83. B. Colas and S. Maroux. Simultaneous isolation of brush border and basolateral membrane from rabbit enterocytes: Presence of brush border hydrolases in the basolateral membrane of rabbit enterocytes. Biochim. Biophys. Acta 600:406–420 (1980).

    Google Scholar 

  84. R. Nau, G. Schäfer, and J. M. Colon. Proteolytic inactivation of substance P in the epithelial layer of the intestine. Biochem. Pharmacol. 34:4019–4023 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, J.P.F., Amidon, G.L. Structural Specificity of Mucosal-Cell Transport and Metabolism of Peptide Drugs: Implication for Oral Peptide Drug Delivery. Pharm Res 9, 969–978 (1992). https://doi.org/10.1023/A:1015885823793

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015885823793

Navigation