Skip to main content
Log in

Up-Regulation of 5-HT2B Receptor Density and Receptor-Mediated Glycogenolysis in Mouse Astrocytes by Long-Term Fluoxetine Administration

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effects were studied of short-term (1 week) versus long-term (2-3 weeks) fluoxetine treatment of primary cultures of mouse astrocytes, differentiated by treatment with dibutyryl cyclic AMP. From previous experiments it is known that acute treatment with fluoxetine stimulates glycogenolysis and increases free cytosolic Ca2+ concentration ([Ca2+]i]) in these cultures, whereas short-term (one week) treatment with 10 μM down-regulates the effects on glycogen and [Ca2+]i, when fluoxetine administration is renewed (or when serotonin is administered). Moreover, antagonist studies have shown that these responses are evoked by activation of a 5-HT2 receptor that is different from the 5-HT2A receptor and therefore at that time tentatively were interpreted as being exerted on 5-HT2C receptors. In the present study the cultures were found by RT-PCR to express mRNA for 5-HT2A and 5-HT2B receptors, but not for the 5-HT2C receptor, identifying the 5-HT2 receptor activated by fluoxetine as the 5-HT2B receptor, the most recently cloned 5-HT2 receptor and a 5-HT receptor known to be more abundant in human, than in rodent, brain. Both short-term and long-term treatment with fluoxetine increased the specific binding of [3H]mesulergine, a ligand for all three 5-HT2 receptors. Long-term treatment with fluoxetine caused an agonist-induced up-regulation of the glycogenolytic response to renewed administration of fluoxetine, whereas short-term treatment abolished the fluoxetine-induced hydrolysis of glycogen. Thus, during a treatment period similar to that required for fluoxetine's clinical response to occur, 5-HT2B-mediated effects are initially down-regulated and subsequently up-regulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Akiyoshi, J., Hough, C., and Chuang, D. M. 1993. Paradoxical increase in 5–hydroxytryptamine2 receptors and 5–hydroxytryptamine2 receptor mRNA in cerebellar granule cells after persistent 5–hydroxytryptamine2 receptor stimulation. Molecular Pharmacology 43:349–355.

    Google Scholar 

  2. Altamura, A. C., Moro, A. R., and Percudani, M. 1994. Clinical pharmacokinetics of fluoxetine. Clinical Pharmacokinetics 26:201–214.

    Google Scholar 

  3. Baez, M., Kursar, J. D., Helton, L. A., Wainscott, D. B., and Nelson, D. L. 1995. Molecular biology of serotonin receptors. Obesity Research 3, Supplementum 4:441S-447S.

    Google Scholar 

  4. Bass, N. H., Hess, H. H., Pope, A., and Thalheimer, C. 1971. Quantitative cytoarchitectonic sistribution of neurons, glia and DNA in rat cerebral cortex. Journal of Comparative Neurology 143:481–490.

    Google Scholar 

  5. Bonhaus, D. W., Bach, C., DeSouza, A., Salazar, F. H., Matsuoka, B. D., Zuppan, P., Chan, H. W., and Eglen, R. M. 1995. The pharmacology and distribution of human 5–hydroxytryptamine2B (5–HT2B) receptor gene product: comparison with 5–HT2A and 5–HT2C receptors. British Journal of Pharmacology 115:622–628.

    Google Scholar 

  6. Cadogan, A. K., Marsden, C. A., Tulloch, I., and Kendall, D. A. 1993. Evidence that chronic administration of paroxetine or fluoxetine enhances 5–HT2 receptor function in the brain of the guinea pig. Neuropharmacology 32:249–256.

    Google Scholar 

  7. Cattini, P. A., Kardami, E., and Eberhardt, N. L. 1988. Effect of butyrate on thyroid hormone-mediated gene expression in rat pituitary tumour cells. Molecular and Cellular Endocrinology 56:263–270.

    Google Scholar 

  8. Chen, H., Li, H., and Chuang, D. M. 1995. Role of second messengers in agonist upregulation of 5–HT2A (5–HT2) receptor binding sites in cerebellar granule neurons: involvement of calcium influx and a calmodulin-dependent pathway. Journal of Pharmacology and Experimental Therapeutics 275:674–680.

    Google Scholar 

  9. Chen, Y., Peng, L., Zhang, X., Stolzenburg, J.-U., and Hertz, L. (1995). Further evidence that fluoxetine interacts with a 5–HT2C receptor. Brain Research Bulletin 38:153–159.

    Google Scholar 

  10. Choi, D. S. and Maroteaux, L. 1996. Immunohistochemical localisation of the serotonin 5–HT2B receptor in mouse gut, cardiovascular system, and brain. FEBS Letters 391:45–51.

    Google Scholar 

  11. Choi, D. S., Ward, S. J., Messadeqq, N., Launay, J. M., and Maroteaux, L. 1997. 5–HT2B receptor-mediated serotonin morphogenetic functions in mouse cranial neural crest and myocardiac cells. Development 124:174–1756.

    Google Scholar 

  12. Choi, D. S., Kellermann, O., Richard, S., Colas, J. F., Bolanos-Jimenez, F., Tournois, C., Launay, J. M., and Maroteaux, L. 1998. Mouse 5–HT2B receptor-mediated serotonin trophic functions. Annals of the New York Academy of Sciences 861:57–73.

    Google Scholar 

  13. Deecher, D. C., Wilcox, B. D., Dave, V., Rossman, P. A., and Kimelberg, H. K. (1993). Detection of 5–hydroxytrytamine2 receptors by radioligand binding, northern blot analysis, and Ca2+ responses in rat primary astrocyte cultures. Journal of Neuroscience Research 35:246–256.

    Google Scholar 

  14. Edgar, V. A., Genaro, A. M., Cremaschi, G., and Sterin-Borda, L. (1998). Fluoxetine action on murine T-lymphocyte proliferation: participation of PKC activation and calcium mobilisation. Cell Signal 10:721–726.

    Google Scholar 

  15. Fedoroff, S., McAuley, W. A., Houle, J. D., and Devon, R. M. 1984. Astrocyte cell lineage. V. Similarity of astrocytes that form in the presence of dBcAMP in cultures to reactive astrocytes in vivo. Journal of Neuroscience Research 12:14–27.

    Google Scholar 

  16. Garcia-Villalba, P., Jimenez-Lara, A. M., Castillo, A. I., and Aranda, A. 1997. Histone acetylation influences thyroid hormone and retinoic acid-mediated gene expression. DNA and Cell Biology 16:421–431.

    Google Scholar 

  17. Hertz, L., Baldwin, F., and Schousboe, A. (1979). Serotonin receptors on astrocytes in primary cultures: Effects of methysergide and fluoxetine. Canadian Journal of Physiology and Pharmacology 57:223–226.

    Google Scholar 

  18. Hertz, L., Schousboe, J., Hertz, L., and Schousboe, A. 1984. Receptor expression in primary cultures of neurons and astrocytes. Progress in Neuropsychopharmacology and Biological Psychiatry 8:521–527.

    Google Scholar 

  19. Hertz, L., Juurlink, B. H. J., Hertz, E., Fosmark, H., and Schousboe, A. 1989. Preparation of primary cultures of mouse (rat) astrocytes. In A Dissection and Tissue Culture Manual for the Nervous System (Shahar, A., de Vellis, J., Vernadakis, A., Haber, B. eds.). Alan R. Liss, New York, pp. 105–108.

    Google Scholar 

  20. Hertz, L., Peng, L., and Lai, J. C. K. 1998. Functional studies in cultured astrocytes. Methods-A Companion to Methods in Enzymology 16:293–310.

    Google Scholar 

  21. Hirst, W. D., Price, G. W., Rattray, M., and Wilkin, G. P. 1997. Identification of 5–hydroxytryptamine receptors positively coupled to adenylyl cyclase in rat cultured astrocytes. British Journal of Pharmacology 120:509–515.

    Google Scholar 

  22. Hirst, W. D., Cheung, N. Y., Rattray, M., Price, G. W., and Wilkin, G. P. 1998. Cultured astrocytes express messenger RNA for multiple receptor subtypes, without functional coupling of 5–HT1 receptor subtypes to adenylyl cyclase. Molecular Brain Research 61:90–99.

    Google Scholar 

  23. Hosli, E. and Hosli, L. 1995. Autoradiographic studies on the uptake of 3H-noradrenaline and 3H-serotonin by neurones and astrocytes in explant and primary cultures of rat CNS: effects of antidepressants. International Journal of Developmental Neuroscience 13:897–908.

    Google Scholar 

  24. Jenck, F., Moreau, J.-L., Mutel, V., and Martin, J. R. 1994. Brain 5–HT1C receptors and antidepressants. Progress in Neuropsychopharmacology and Biological Psychiatry 18:563–574.

    Google Scholar 

  25. Jerman, J. C., Brough, S. J., Gager, T., Wood, M., Coldwell, M. C., Smart, D., and Middlemiss, D. N. 2001. Pharmacological characterisation of human 5–HT(2) receptor subtypes. European Journal of Pharmacology 414:23–30.

    Google Scholar 

  26. Juurlink, B. H. J. and Hertz, L. 1992. Astrocytes. In: Boulton, A., Baker, G., Walz, W., eds. Neuromethods, vol. 23. Humana Press, Totowa, New Jersey, pp. 269–321.

    Google Scholar 

  27. Kimelberg, H. K. and Katz, D. M. 1985. High-affinity uptake of serotonin into immunocytochemically identified astrocytes. Science 228:889–891.

    Google Scholar 

  28. Klimek, V., Zak-Knapik, J., and Mackowiak, M. 1994. Effects of repeated treatment with fluoxetine and citalopram, 5–HT uptake inhibitors, on 5–HT1A and 5–HT2 receptors in rat brain. Journal of Psychiatry and Neuroscience 19:63–67.

    Google Scholar 

  29. Kruh, J. 1982. Effects of sodium butyrate, a new pharmacological agent, on cells in culture. Molecular and Cellular Biochemistry 43:65–82.

    Google Scholar 

  30. Kursar, J. D., Nelson, D. L., Wainscott, D. B., and Baez, M. 1994. Molecular cloning, functional expression and mRNA tissue distribution of the human 5–hydroxytryptamine-2B receptor. Molecular Pharmacology 46:227–234.

    Google Scholar 

  31. Laakso, A., Palvimaki, E. P., Kuoppamaki, M., Syvalahti, E., and Hietala, J. 1996. Chronic citalopram and fluoxetine treatments upregulate 5–HT2C receptors in the rat choroid plexus. Neuropsychpharmacology 15:143–151.

    Google Scholar 

  32. Li, Q., Muma, N. A., Battaglia, G., and van de Kar, L. D. 1997. Fluoxetine gradually increases [125I]DOI-labelled 5–HT2A/C receptors in the hypothalamus without changing the levels of Gq-and G11–proteins. Brain Research 775:225–228.

    Google Scholar 

  33. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193:265–275.

    Google Scholar 

  34. Meier, E., Hertz, L., and Schousboe, A. 1991. Neurotransmitters as developmental signals. Neurochemistry International 19:1–15.

    Google Scholar 

  35. Ni, Y. G. and Miledi, R. 1997. Blockage of 5–HT2C serotonin receptors by fluoxetine (Prozac). Proceedings of the National Academy of Sciences, USA 94:2036–2040.

    Google Scholar 

  36. Nilsson, M., Hansson, E., and Ronnback, L. 1991. Heterogeneity among astroglial cells with respect to 5–HT-evoked cytosolic Ca2+ responses. A microspectrofluorometric study on single cells in primary culture. Life Sciences 49:1339–1350.

    Google Scholar 

  37. Palvimaki, E. P., Roth, B. L., Majasuo, H., Laakso, A., Kuoppamaki, M., Syvalahti, E., and Hietala, J. 1996. Interactions of selective serotonin reuptake inhibitors with the serotonin 5–HT2C receptor.

  38. Palvimaki, E. P., Kuoppamaki, M., Syvalahti, E., and Hietala, J. 1999. Differential effects of fluoxetine and citalopram treatments on serotonin 5–HT(2C) receptor occupancy in rat brain. International Journal of Neuropsychopharmacology 2:95–99.

    Google Scholar 

  39. Poblete, J. C. and Azmitia, E. C. 1995. Activation of glycogen phosphorylase by serotonin and 3,4–methylenedioxymethamphetamine in astroglial-rich primary cultures: involvement of the 5–HT2A receptor.

  40. Porter, R. H., Benwell, K. R., Lamb, H., Malcolm, C. S., Allen, N. H., Revell, D. F., Adams, D. R., and Sheardown, M. J. 1999. Functional characterization of agonists at recombinant human 5–HT2A, 5–HT2B and 5–HT2C, receptors in CHO-Kl cells. British Journal of Pharmacology 128:13–20.

    Google Scholar 

  41. Rajkowska, G., Miguel-Hidalgo, J. J., Wei, J., Dilley, G., Pittman, S. D., Meltzer, H. Y., Overholser, J. C., Roth, B. L., and Stockmeier, C. A. 1999. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol. Psychiatry 45:1085–1098.

    Google Scholar 

  42. Sanden, N., Thorlin, T., Blomstrand, F., Persson, P. A. I., and Hansson, E. 2000. 5–Hydroxytryptamine2B receptors stimulate Ca2+ increases in cultured astrocytes from three different brain regions. Neurochemistry International 36:427–434.

    Google Scholar 

  43. Schmuck, K., Ullmer, C., Engels, P., and Lubbert, H. 1994. Cloning and functional characterization of the human 5–HT2B serotonin receptor. FEBS Letters 342:85–90.

    Google Scholar 

  44. Schmuck, K., Ullmer, C., Kalkman, H. O., Probst, A., and Lubbert, H. 1996. Activation of meningeal 5–HT2B receptors: an early step in the generation of migraine headache? European Journal of Neuroscience 8:959–967.

    Google Scholar 

  45. Schubert, P., Morino, T., Miyazaki, H., Ogata, T., Nakamura, Y., Marchini, C., and Ferroni, S. 2000. Cascading glia reactions: a common pathomechanism and its differentiated control by cyclic nucleotide signalling. Annals of New York Academy of Sciences 903:24–33.

    Google Scholar 

  46. Stefulj, J., Jernej, B., Clsin-Sain, L., Rinner, I., and Schauenstein, K. 2000. mRNA expression of serotonin receptors in cells of the immune tissues of the rat. Brain, Behavior and Immunology 14:219–224.

    Google Scholar 

  47. Subbarao, K. V. and Hertz, L. 1990. Effects of adrenergic agonists on glycogenolysis in primary cultures of astrocytes. Brain Research 536:220–226.

    Google Scholar 

  48. Tang, K. Y., Cheng, J. S., Lee, K. C., Chou, K. J., Huang, J. K., Chen, W. C., and Jan, C. R. 2001. Fluoxetine-induced Ca2+ signals in Madin-Darby canine kidney cells. Naunyn-Schmiedebergs Archives of Pharmacology 363:16–20.

    Google Scholar 

  49. Thomas, D. R., Gager, T. L., Holland, V., Brown, A. M., and Wood, M. D. 1996. m-Chlorophenylpiperazine (mCPP) is an antagonist at the cloned 5–HT2B receptor. Neuroreport 7:1457–1460.

    Google Scholar 

  50. Wandosell, F., Bovolenta, P., and Nieto-Sampedro, M. 1993. Differences between reactive astrocytes and cultured astrocytes treated with di-butyryl-cyclic AMP. Journal of Neuropathology and Experimental Neurology 52:205–215.

    Google Scholar 

  51. Wisden, W., Parker, E. M., Mahle, C. D., Grisel, D. A., Nowak, H. P., Yocca, F. D., Felder, C. C., Seeburg, P. H., and Voigt, M. M. 1993. Cloning and characterization of the rat 5–HT2B receptor. Evidence that the 5–HT2B receptor couples to a G protein in mammalian cell membranes. FEBS Letters 333:25–31.

    Google Scholar 

  52. Wong, D. T., Threlkeld, P. G., and Robertson, D. W. 1991. Affinities of fluoxetine, its enantiomers, and other inhibitors of serotonin uptake for subtypes of serotonin receptors. Neuropsychopharmacology 5:43–47.

    Google Scholar 

  53. Zhang, X., Peng, L., Chen, Y., and Hertz, L. 1993. Stimulation of glycogenolysis in astrocytes by fluoxetine, an antidepressant acting like 5–HT. NeuroReport 4:1235–1238.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, E.K.C., Peng, L., Chen, Y. et al. Up-Regulation of 5-HT2B Receptor Density and Receptor-Mediated Glycogenolysis in Mouse Astrocytes by Long-Term Fluoxetine Administration. Neurochem Res 27, 113–120 (2002). https://doi.org/10.1023/A:1014862808126

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014862808126

Navigation