Skip to main content
Log in

Phospholamban: A Promising Therapeutic Target in Heart Failure?

Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Dilated cardiomyopathy and end-stage heart failure result in characteristic functional, biochemical and molecular alterations. Multiple defects in cardiac excitation-contraction coupling have been suggested to underlie disturbed myocardial function and progressive remodeling. Ca2+ uptake and release by the sarcoplasmic reticulum (SR) have been shown to be altered in various animal models and human conditions. This review will focus on SR Ca2+ ATPase and its regulatory protein, phospholamban, as potential therapeutic targets. We summarize structural and genetic approaches, which have helped to elucidate the physiological role of phospholamban as a principal regulator of cardiac contractility and β-adrenergic stimulation in the heart. These findings are extended to the clinical arena, indicating a phospholamban/SR Ca2+ ATPase mismatch in human heart failure. Evidence is then provided, using genetically engineered mouse models, that SR dysfunction may play a key role in the onset and progression of heart failure. Phospholamban deficiency may prevent such left ventricular dysfunction and its progression to heart failure in some of the animal models with dilated cardiomyopathy. Based on these findings, we discuss the question of whether and how interfering with the phospholamban/SR Ca2+ ATPase interaction may be a promising therapeutic approach for heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Katz AM. Heart Failure: Pathophysiology, Molecular Biology and Clinical Management. Philadelphia: Lippincott Williams & Wilkins, 1999.

    Google Scholar 

  2. Johnson RG. Pharmacology of the cardiac sarcoplasmic reticulum calcium ATPase-phospholamban interaction. Ann N Y Acad Sci 1998; 853: 380-392.

    Google Scholar 

  3. Cohn JN. Heart failure: Future treatment approaches. Am J Hypertens 2000; 13: 74S-78S.

    Google Scholar 

  4. Barry WH. Molecular inotropy: A future approach to the treatment of heart failure? Circulation 1999; 100: 2303-2304.

    Google Scholar 

  5. Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling-Concepts and clinical implications: A consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol 2000; 35: 569-582.

    Google Scholar 

  6. Bristow MR. Why does the myocardium fail? Insights from basic science. Lancet 1998; 352(Suppl 1): SI8-14.

    Google Scholar 

  7. Hasenfuss G. Alterations of calcium-regulatory proteins in heart failure. Cardiovasc Res 1998; 37: 279-289.

    Google Scholar 

  8. Hasenfuss G. Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovasc Res 1998; 39: 60-76.

    Google Scholar 

  9. Mittmann C, Eschenhagen T, Scholz H. Cellular and molecular aspects of contractile dysfunction in heart failure. Cardiovasc Res 1998; 39: 267-275.

    Google Scholar 

  10. Houser SR, Piacentino V, Weisser J. Abnormalities of calcium cycling in the hypertrophied and failing heart. J Mol Cell Cardiol 2000; 32: 1595-1607.

    Google Scholar 

  11. Hasenfuss G, Reinecke H, Studer R, et al. Relation between myocardial function and expression of sarcoplasmic reticulum Ca(2+)-ATPase in failing and nonfailing human myocardium. Circ Res 1994; 75: 434-442.

    Google Scholar 

  12. Bers DM. Ca transport during contraction and relaxation in mammalian ventricular muscle. Basic Res Cardiol 1997; 92: 1-10.

    Google Scholar 

  13. Kadambi VJ, Kranias EG. Phospholamban: A protein coming of age. Biochem Biophys Res Commun 1997; 239: 1-5.

    Google Scholar 

  14. Simmerman HK, Jones LR. Phospholamban: Protein structure, mechanism of action, and role in cardiac function. Physiol Rev 1998; 78: 921-947.

    Google Scholar 

  15. MacLennan DH, Kimura Y, Toyofuku T. Sites of regulatory interaction between calcium ATPases and phospholamban. Ann N Y Acad Sci 1998; 853: 31-42.

    Google Scholar 

  16. Toyofuku T, Kurzydlowski K, Tada M, MacLennan DH. Amino acids Glu2 to Ile18 in the cytoplasmic domain of phospholamban are essential for functional association with the Ca(2+)-ATPase of sarcoplasmic reticulum. J Biol Chem 1994; 269: 3088-3094.

    Google Scholar 

  17. Sasaki T, Inui M, Kimura Y, Kuzuya T, Tada M. Molecular mechanism of regulation of Ca2+ pump ATPase by phospholamban in cardiac sarcoplasmic reticulum. Effects of synthetic phospholamban peptides on Ca2+pumpATPase. J BiolChem 1992; 267: 1674-1679.

    Google Scholar 

  18. Kimura Y, Kurzydlowski K, Tada M, MacLennan DH. Phospholamban regulates the Ca2+-ATPase through intramembrane interactions. J Biol Chem 1996; 271: 21726-21731.

    Google Scholar 

  19. Kimura Y, Asahi M, Kurzydlowski K, Tada M, MacLennan DH. Phospholamban domain Ib mutations influence functional interactions with the Ca2+-ATPase isoform of cardiac sarcoplasmic reticulum. J Biol Chem 1998; 273: 14238-14241.

    Google Scholar 

  20. Zhai J, Schmidt AG, Hoit BD, Kimura Y, MacLennan DH, Kranias EG. Cardiac-specific overexpression of a superinhibitory pentameric phospholamban mutant enhances inhibition of cardiac function in vivo. J Biol Chem 2000; 275: 10538-10544.

    Google Scholar 

  21. MacLennan DH, Toyofuku T, Kimura Y. Sites of regulatory interaction between calcium ATPases and phospholamban. Basic Res Cardiol 1997; 92: 11-15.

    Google Scholar 

  22. Edes I, Chu G, Kranias EG. Sarcoplasmic reticulum Ca2+ transport. In: Sperelakis N, Kurachi Y, Terzic A, Cohen MV, eds. Heart Physiogy and Pathophysiology. San Diego: Academic Press, 2000: 447-460.

    Google Scholar 

  23. Kranias EG, Solaro RJ. Phosphorylation of troponin I and phospholamban during catecholamine stimulation of rabbit heart. Nature 1982; 298: 182-184.

    Google Scholar 

  24. Steenaart NA, Ganim JR, Di Salvo J, Kranias EG. The phospholamban phosphatase associated with cardiac sarcoplasmic reticulum is a type 1 enzyme. Arch Biochem Biophys 1992; 293: 17-24.

    Google Scholar 

  25. Neumann J, Gupta RC, Schmitz W, Scholz H, Nairn AC, Watanabe AM. Evidence for isoproterenol-induced phosphorylation of phosphatase inhibitor-1 in the intact heart. Circ Res 1991; 69: 1450-1457.

    Google Scholar 

  26. Kadambi VJ, Kranias EG. Genetically engineered mice: Model systems for left ventricular failure. J Card Fail 1998; 4: 349-361.

    Google Scholar 

  27. Kadambi VJ, Ponniah S, Harrer JM, et al. Cardiac-specific overexpression of phospholamban alters calcium kinetics and resultant cardiomyocyte mechanics in transgenic mice. J Clin Invest 1996; 97: 533-539.

    Google Scholar 

  28. Luo W, Grupp IL, Harrer J, et al. Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation. Circ Res 1994; 75: 401-409.

    Google Scholar 

  29. Wolska BM, Stojanovic MO, Luo W, Kranias EG, Solaro RJ. Effect of ablation of phospholamban on dynamics of cardiac myocyte contraction and intracellular Ca2+. Am J Physiol 1996; 271: C391-C397.

    Google Scholar 

  30. Lorenz JN, Kranias EG. Regulatory effects of phospholamban on cardiac function in intact mice. Am J Physiol 1997; 273: H2826-H2831.

    Google Scholar 

  31. Hoit BD, Khoury SF, Kranias EG, Ball N, Walsh RA. In vivo echocardiographic detection of enhanced left ventricular function in gene-targeted mice with phospholamban deficiency. Circ Res 1995; 77: 632-637.

    Google Scholar 

  32. Brittsan AG, Carr AN, Schmidt AG, Kranias EG. Maximal inhibition of SERCA2 Ca(2+) affinity by phospholamban in transgenic hearts overexpressing a non-phosphorylatable form of phospholamban. J Biol Chem 2000; 275: 12129-12135.

    Google Scholar 

  33. Hoit BD, Ball N, Walsh RA. Invasive hemodynamics and force-frequency relationships in open-versus closed-chest mice. Am J Physiol 1997; 273: H2528-H2533.

    Google Scholar 

  34. Kadambi VJ, Ball N, Kranias EG, Walsh RA, Hoit BD. Modulation of force-frequency relation by phospholamban in genetically engineered mice. Am J Physiol 1999; 276: H2245-2250.

    Google Scholar 

  35. Luo W, Wolska BM, Grupp IL, et al. Phospholamban gene dosage effects in the mammalian heart. Circ Res 1996; 78: 839-847.

    Google Scholar 

  36. Hasenfuss G, Mulieri LA, Leavitt BJ, Allen PD, Haeberle JR, Alpert NR. Alteration of contractile function and excitationcontraction coupling in dilated cardiomyopathy. Circ Res 1992; 70: 1225-1232.

    Google Scholar 

  37. Beuckelmann DJ, Nabauer M, Erdmann E. Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure [see comments]. Circulation 1992; 85: 1046-1055.

    Google Scholar 

  38. Pieske B, Kretschmann B, Meyer M, et al. Alterations in intracellular calcium handling associated with the inverse force-frequency relation in human dilated cardiomyopathy. Circulation 1995; 92: 1169-1178.

    Google Scholar 

  39. Gwathmey JK, Copelas L, MacKinnon R, et al. Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res 1987; 61: 70-76.

    Google Scholar 

  40. Morgan JP. Abnormal intracellular modulation of calcium as a major cause of cardiac contractile dysfunction. N Engl JMed 1991; 325: 625-632.

    Google Scholar 

  41. Mercadier JJ, Lompre AM, Duc P, et al. Altered sarcoplasmic reticulum Ca2(+)-ATPase gene expression in the human ventricle during end-stage heart failure. J Clin Invest 1990; 85: 305-309.

    Google Scholar 

  42. Arai M, Alpert NR, MacLennan DH, Barton P, Periasamy M. Alterations in sarcoplasmic reticulum gene expression in human heart failure. A possible mechanism for alterations in systolic and diastolic properties of the failing myocardium. Circ Res 1993; 72: 463-469.

    Google Scholar 

  43. Arai M, Matsui H, Periasamy M. Sarcoplasmic reticulum gene expression in cardiac hypertrophy and heart failure. Circ Res 1994; 74: 555-564.

    Google Scholar 

  44. Meyer M, Schillinger W, Pieske B, et al. Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 1995; 92: 778-784.

    Google Scholar 

  45. Schwinger RH, Bohm M, Schmidt U, et al. Unchanged protein levels of SERCA II and phospholamban but reduced Ca2+ uptake and Ca(2+)-ATPase activity of cardiac sarcoplasmic reticulum from dilated cardiomyopathy patients compared with patients with nonfailing hearts. Circulation 1995; 92: 3220-3228.

    Google Scholar 

  46. Marx SO, Reiken S, Hisamatsu Y, et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): Defective regulation in failing hearts. Cell 2000; 101: 365-376.

    Google Scholar 

  47. Katz AM. Is the failing heart energy depleted? Cardiol Clin 1998; 16: 633-644, viii.

    Google Scholar 

  48. Gomez AM, Valdivia HH, Cheng H, et al. Defective excitationcontraction coupling in experimental cardiac hypertrophy and heart failure. Science 1997; 276: 800-806.

    Google Scholar 

  49. Bristow MR, Ginsburg R, Minobe W, et al. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med 1982; 307: 205-211.

    Google Scholar 

  50. Neumann J, Eschenhagen T, Jones LR, et al. Increased expression of cardiac phosphatases in patients with end-stage heart failure. J Mol Cell Cardiol 1997; 29: 265-272.

    Google Scholar 

  51. Schwinger RH, Munch G, Bolck B, Karczewski P, Krause EG, Erdmann E. Reduced Ca(2+)-sensitivity of SERCA 2a in failing human myocardium due to reduced serin-16 phospholamban phosphorylation. JMol Cell Cardiol 1999; 31: 479-491.

    Google Scholar 

  52. Perez NG, Hashimoto K, McCune S, Altschuld RA, Marban E. Origin of contractile dysfunction in heart failure: Calcium cycling versus myofilaments. Circulation 1999; 99: 1077-1083.

    Google Scholar 

  53. Balke CW, Wang Y. Distinguishing mechanisms from markers of cardiac contractile dysfunction: More than 1 way to skin the cat of heart failure. Circulation 2000; 101: 738-739.

    Google Scholar 

  54. Dash R, Kadambi VJ, Schmidt AG, et al. Interactions between phospholamban and beta-adrenergic drive may lead to cardiomyopathy and early mortality. Circulation 2001; 103: 889-896.

    Google Scholar 

  55. Bristow MR. Of phospholamban, mice, and humans with heart failure. Circulation 2001; 103: 787-788.

    Google Scholar 

  56. Kimura Y, Kurzydlowski K, Tada M, MacLennan DH. Phospholamban inhibitory function is activated by depolymerization. J Biol Chem 1997; 272: 15061-15064.

    Google Scholar 

  57. Autry JM, Jones LR. Functional co-expression of the canine cardiac Ca2+ pump and phospholamban in Spodoptera frugiperda (Sf 21) cells reveals new insights on ATPase regulation. J Biol Chem 1997; 272: 15872-15880.

    Google Scholar 

  58. Zvaritch E, Backx PH, Jirik F, et al. The transgenic expression of highly inhibitory monomeric forms of phospholamban in mouse heart impairs cardiac contractility. J Biol Chem 2000; 275: 14985-14991.

    Google Scholar 

  59. Minamisawa S, Hoshijima M, Chu G, et al. Chronic phospholamban-sarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy. Cell 1999; 99: 313-322.

    Google Scholar 

  60. Sato Y, Kiriazis H, Yatani A, et al. Rescue of contractile parameters and myocyte hypertrophy in calsequestrin overexpressing myocardium by phospholamban ablation. J Biol Chem 2000; 13: 13.

    Google Scholar 

  61. Delling U, Sussman MA, Molkentin JD. Re-evaluating sarcoplasmic reticulum function in heart failure. Nat Med 2000; 6: 942-943.

    Google Scholar 

  62. Sussman MA, Welch S, Gude N, et al. Pathogenesis of dilated cardiomyopathy: Molecular, structural, and population analyses in tropomodulin-overexpressing transgenic mice. Am J Pathol 1999; 155: 2101-2113.

    Google Scholar 

  63. Chu G, Luo W, Slack JP, et al. Compensatory mechanisms associated with the hyperdynamic function of phospholambandeficient mouse hearts. Circ Res 1996; 79: 1064-1076.

    Google Scholar 

  64. Desai KH, Schauble E, Luo W, Kranias E, Bernstein D. Phospholamban deficiency does not compromise exercise capacity. Am J Physiol 1999; 276: H1172-H1177.

    Google Scholar 

  65. Ohizumi Y, Sasaki S, Shibusawa K, Ishikawa K, Ikemoto F. Stimulation of sarcoplasmic reticulum Ca(2+)-ATPase by gingerol analogues. Biol Pharm Bull 1996; 19: 1377-1379.

    Google Scholar 

  66. Antipenko AY, Spielman AI, Kirchberger MA. Interactions of 6-gingerol and ellagic acid with the cardiac sarcoplasmic reticulum Ca2+-ATPase. J Pharmacol Exp Ther 1999; 290: 227-234.

    Google Scholar 

  67. Patil AD, Freyer AJ, Carte B, Johnson RK, Lahouratate P. Plakortides, novel cyclic peroxides from the sponge Plakortis halichondrioides: Activators of cardiac SR-CA(2+)-pumping ATPase. J Nat Prod 1996; 59: 219-223.

    Google Scholar 

  68. Berrebi-Bertrand I, Lahouratate P, Lahouratate V, Camelin JC, Guibert J, Bril A. Mechanism of action of sarcoplasmic reticulum calcium-uptake activators-Discrimination between sarco(endo)plasmic reticulum Ca2+ ATPase and phospholamban interaction. Eur J Biochem 1997; 247: 801-809.

    Google Scholar 

  69. McKenna E, Smith JS, Coll KE, et al. Dissociation of phospholamban regulation of cardiac sarcoplasmic reticulum Ca2+ATPase by quercetin. J Biol Chem 1996; 271: 24517-24525.

    Google Scholar 

  70. Coll KE, Johnson RG, McKenna E. Relationship between phospholamban and nucleotide activation of cardiac sarcoplasmic reticulum Ca2+ adenosinetriphosphatase. Biochemistry 1999; 38: 2444-2451.

    Google Scholar 

  71. Coll KE, Johnson RG, McKenna E. Nucleotide mimetics reverse phospholamban regulation in cardiac sarcoplasmic reticulum. Ann N Y Acad Sci 1998; 853: 267-269.

    Google Scholar 

  72. Chiesi M, Schwaller R. Reversal of phospholamban-induced inhibition of cardiac sarcoplasmic reticulum Ca(2+)-ATPase by tannin. Biochem Biophys Res Commun 1994; 202: 1668-1673.

    Google Scholar 

  73. Miyamoto MI, del Monte F, Schmidt U, et al. Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc Natl Acad Sci USA 2000; 97: 793-798.

    Google Scholar 

  74. Schmidt U, del Monte F, Miyamoto MI, et al. Restoration of diastolic function in senescent rat hearts through adenoviral gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase. Circulation 2000; 101: 790-796.

    Google Scholar 

  75. del Monte F, Harding SE, Schmidt U, et al. Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation 1999; 100: 2308-2311.

    Google Scholar 

  76. Eizema K, Fechner H, Bezstarosti K, et al. Adenovirusbased phospholamban antisense expression as a novel approach to improve cardiac contractile dysfunction: Comparison of a constitutive viral versus an endothelin-1-responsive cardiac promoter. Circulation 2000; 101: 2193-2199.

    Google Scholar 

  77. He H, Meyer M, Martin JL, et al. Effects of mutant and antisense RNA of phospholamban on SR Ca(2+)-ATPase activity and cardiac myocyte contractility. Circulation 1999; 100: 974-980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, A.G., Edes, I. & Kranias, E.G. Phospholamban: A Promising Therapeutic Target in Heart Failure?. Cardiovasc Drugs Ther 15, 387–396 (2001). https://doi.org/10.1023/A:1013381204658

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013381204658

Navigation