Skip to main content
Log in

Translational Regulation as a Novel Mechanism for the Development of Cellular Drug Resistance

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Cellular drug resistance is one of the principal obstacles to the clinical efficacy of cancer chemotherapy. In this review, we describe the potential role for translational regulation as a novel mechanism for modulating chemosensitivity. The evidence for the translational control of thymidylate synthase, dihydrofolate reductase, and p53 will be presented, as will experimental data showing how disruptions in this important regulatory process can lead to the rapid emergence of cellular drug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Goldie JH,Coldman AJ: A mathematical model for relating the drug sensitivity of tumors to the spontaneous mutation rate. Cancer Treat Rep 63: 1727–1738, 1979

    Google Scholar 

  2. Bunz F,Hwang PM,Torrance C,Waldman T,Zhang Y,Dillehay L,Williams J,Lengauer C,Kinzler KW,Vogelstein B: Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest 104: 263–269, 1999

    Google Scholar 

  3. Lowe SW,Ruley HE,Jacks T,Houseman DE: p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74: 957–967, 1993

    Google Scholar 

  4. Lowe SW,Bondis S,McClatchey A,Remington L: p53 status and the efficacy of cancer therapy in vivo. Science 266: 807–810, 1994

    Google Scholar 

  5. Hawkins DS,Demers GW,Galloway DA: Inactivation of p53 enhances sensitivity to multiple chemotherapeutic agents. Cancer Res 56: 892–898, 1996

    Google Scholar 

  6. O'Connor PM,Jackman J,Bae I,Myers TG,Fan S,Mutoh M,Scudiero DA,Monks A,Paull K,Sausville EA,Weinstein JN: Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res 57(4): 285–4300, 1997

    Google Scholar 

  7. Markowitz S: DNA repair defects inactivate tumor suppressor genes and induce hereditary and sporadic colon cancers. J Clin Oncol 18(Suppl 21): 75S–80S, 2000

    Google Scholar 

  8. Lynch HT,Lynch J: Lynch syndrome: genetics, natural history, genetic counseling, and prevention. J Clin Oncol 18(Suppl 21): 19S–21S, 2000

    Google Scholar 

  9. Fink D,Aebi S,Howell SB: The role of DNA mismatch repair in drug resistance. Clin Cancer Res 4: 1–6, 1998

    Google Scholar 

  10. Taverna P,Liu L,Hanson AJ,Monks A,Gerson SL: Characterization ofMLH1andMSH2DNAmismatch repair proteins in cell lines of the NCI anticancer drug screen. Cancer Chemo Pharmacol 46: 507–516, 2000

    Google Scholar 

  11. Lin X,Ramamurthi K,Mishima M: p53 modulates the effect of loss of DNA mismatch repair on the sensitivity of human colon cancer cells to the cytotoxic and mutagenic effects of cisplatin. Cancer Res 15: 1508–1516, 2001

    Google Scholar 

  12. Mathews MB,Sonenberg N,Hershey JWB: Origins and targets of translational control. In: Mathews MB,Sonenberg N,Hershey JWB (eds) Translational Control, Cold Spring Harbor Press, 1996, pp 1–27

  13. Santi DV,Danenberg PV: Folates in pyrimidine nucleotide biosynthesis. In: Blakely RL,Benkovic SJ (eds) Folate and Pteridines, Wiley, New York, 1984, pp 345–398

    Google Scholar 

  14. Carreras C,Santi DV: The catalytic mechanism and structure of thymidylate synthase. Annu Rev Biochem 64: 721–762, 1995

    Google Scholar 

  15. Danenberg PV: Thymidylate synthase: a target enzyme in cancer chemotherapy. Biochem Biophys Acta 473: 73–79, 1977

    Google Scholar 

  16. Labow R,Maley GF,Maley F: The effect of methotrexate on enzyme induced following partial hepatectomy. Cancer Res 29: 366–372, 1969

    Google Scholar 

  17. Bonney RJ,Maley F: Effect of methotrexate on thymidylate synthetase in cultured parenchymal cells isolated from regenerating rat liver. Cancer Res 35: 1950–1956, 1975

    Google Scholar 

  18. Spears CP,Shahinian AH,Moran RG: In vivo kinetics of thymidylate synthase inhibition in 5-fluororuacil-sensitive and resistant murine colon adenocarcinoma. Cancer Res 42: 450–456, 1982

    Google Scholar 

  19. Washtein WL: Increased levels of thymidylate synthetase in cells exposed to 5-fluorouracil. Mol Pharmacol 25: 171–177, 1984

    Google Scholar 

  20. Swain SM,Lippman MC,Egan EF,Drake JC,Steinberg SM,Allegra CJ: 5-Fluorouracil and high-dose leucovorin in previously treated patients with metastatic breast cancer. J Clin Oncol 7: 890–899, 1989

    Google Scholar 

  21. Van der Wilt CL,Pinedo HM,Smit K,Peters GJ: Elevation of thymidylate synthase following 5-fluorouracil treatment is prevented by the addition of leucovorin in murin colon tumors. J Clin Oncol 12: 2035–2042, 1994

    Google Scholar 

  22. Keyomarsi K,Samet J,Molnar G,Pardee AB: The thymidylate synthase inhibitor, ICI D 1694, overcomes translational detainment of the enzyme. J Biol Chem 268: 15142–15149, 1993

    Google Scholar 

  23. Chu E,Zinn S,Boarman D,Allegra CJ: Interaction of gamma interferon and 5-fluorouracil in the H630 human colon carcinoma cell line. Cancer Res 50: 5834–5840, 1990

    Google Scholar 

  24. Chu E,Koeller DM,Johnston PG,Zinn S,Allegra CJ: Regulation of thymidylate synthase in human colon cancer cells treated with 5-fluorouracil and interferon-gamma. Mol Pharmacol 43: 527–533, 1993

    Google Scholar 

  25. Welsh SJ,Titley J,Brunton L,Valenti M,Monaghan P,Jackman AL,Aherne GW: Comparison of thymidylate synthase (TS) protein up-regulation after exposure to TS inhibitors in normal and tumor cell lines and tissues. Clin Cancer Res 6: 2538–2546, 2000

    Google Scholar 

  26. Carey J,Cameron V,de Haseth PL,Uhlenbeck OC: Sequence-specific interaction of R17 coat protein with its ribonucleic acid binding site. Biochemistry 22: 2601–2610, 1983

    Google Scholar 

  27. Bernardi A,Spahr P-F: Nucleotide sequence at the binding site for coat protein on RNA of bacteriophage R17. Proc Natl Acad Sci USA 69: 3033–3037, 1972

    Google Scholar 

  28. Winter RB,Morrissey L,Gauss P,Godl L,Hsu T,Karam J: Bacteriophage T4 regA protein binds to mRNAs and prevents translation initiation. Proc Natl Acad Sci USA 94: 7822–7826, 1987

    Google Scholar 

  29. Andrake M,Guild N,Hsu T,Gold L,Tuerk C,Karam J: DNA polymerase of bacteriophage T4 is an autogenous translational repressor. Proc Natl Acad Sci USA 85: 7942–7946, 1988

    Google Scholar 

  30. Gold L: Posttranscriptional regulatory mechanisms in Escherichia coli. Ann Rev Biochem 57: 199–233, 1988

    Google Scholar 

  31. Chu E,Takimoto CH,Voeller D,Grem JL,Allegra CJ: Specific binding of human dihydrofolate reductase protein to dihydrofolate reductase messenger RNA in vitro. Biochemistry 32: 4756–4760, 1993

    Google Scholar 

  32. Ercikan E,Banerjee D,Waltham M,Schnieders B,Scotto KW,Bertino JR: Translational regulation of the synthesis of dihydrofolate reductase. Adv Exp Med Biol 338: 537–540, 1993

    Google Scholar 

  33. Ercikan-Abali EA,Banerjee D,Waltham MC,Skacel N,Scotto KW,Bertino JR: Dihydrofolate reductase protein inhibits its own translation by binding to dihydrofolate reductase mRNA sequences within the coding region. Biochemistry 36: 12317–12322, 1997

    Google Scholar 

  34. Mosner JT,Mummenbrauer C,Bauer G,Sczakeil F,Grosse F,Deppert W: Negative feedback regulation of wildtype p53 synthesis. EMBO J 14: 4442–4449, 1995

    Google Scholar 

  35. Fu L,Minden D,Benchimol S: Translational regulation of human p53 expression. EMBO J 15: 4392–4401, 1996

    Google Scholar 

  36. Chu E,Koeller DM,Casey JL,Drake CC,Chabner BA,Elwood PC,Zinn S,Allegra CJ: Autoregulation of human thymidylate synthase messenger RNA translation by thymidylate synthase. Proc Natl Acad Sci USA 88: 8977–8981, 1991

    Google Scholar 

  37. Chu E,Voeller DM,Koeller DM,Drake JC,Takimoto CH,Maley F,Maley GF,Allegra CJ: Identification of an RNA binding site for human thymidylate synthase. Proc Natl Acad Sci USA 90: 517–521, 1993

    Google Scholar 

  38. Lin X,Parsels LA,Voller DM,Allegra CJ,Maley GF,Maley F,Chu E: Characterization of a cis-acting regulatory element in the protein coding region of thymidylate synthase mRNA. Nucleic Acids Res 28: 1381–1389, 2000

    Google Scholar 

  39. Chu E,Voeller DM,Morrison PF,Jones KL,Takechi T,Maley GF,Maley F,Allegra CJ: The effect of reducing reagents on binding of thymidylate synthase protein to thymidylate synthase messenger RNA. J Biol Chem 269: 20289–20293, 1994

    Google Scholar 

  40. Chu E,Allegra CJ: Antifolates. In: Chabner BA,Longo DL (eds) Cancer Chemotherapy and Biotherapy, 2nd edn, Lippincott-Raven, Philadelphia, 1996, pp 109–148

    Google Scholar 

  41. Bertino JR,Kamen BA,Romanini A: Folate antagonists. In: Holland JF,Bast RC,Morton DL,Frei E et al. (eds) Cancer Medicine, 4th edn, Williams and Wilkins, Philadelphia, 1997, pp 907–922

    Google Scholar 

  42. Schweitzer BI,Dicker AP,Bertino JR: Dihydrofolate reductase as a therapeutic target. The FASEB J 4: 2441–2452, 1990

    Google Scholar 

  43. Bertino JR,Silber R,Freeman M,Alenty A,Albrecht M,Gabrio BW,Huennekens FMJ: Studies on normal and leukemic leucocytes. IV. Tetrahydrofolate-dependent enzyme systems and dihydrofolate reductase. J Clin Invest 42: 1899–1907, 1963

    Google Scholar 

  44. Bertino JR,Cashmore E,Fink M: The ‘induction’ of leukocyte and erythrocyte and dihydrofolate reductase by methotrexate. II. Clinical and pharmacological studies. Pharmacol Ther 6: 763–770, 1965

    Google Scholar 

  45. Hillcoat BL,Swett V,Bertino JR: Increase of dihydrofolate reductase activity in cultured mammalian cells after exposure to methotrexate. Proc Natl Acad Sci USA 58: 1632–1637, 1967

    Google Scholar 

  46. Bastow K,Pabhu R,Cheng YC: The intracellular content of dihydrofolate reductase: possibilities for control and implications for chemotherapy. Adv Enzyme Regulation 22: 15–26, 1984

    Google Scholar 

  47. Domin BA,Grill SP,Bastow KF,Cheng YC: Effect of methotrexate on dihydrofolate reductase activity in methotrexate-resistant human KB cells. Mol Pharmacol 21: 478–482, 1992

    Google Scholar 

  48. Cowan KH,Goldsmith ME,Ricciardone MD,Levine R,Rubalcaba E,Jolivet J: Regulation of dihydrofolate reductase in human breast cancer cells and in mutant hamster cells transfected with a human dihydrofolate reductase minigene. Mol Pharmacol 30: 69–76, 1986

    Google Scholar 

  49. Grem JL,Voeller DM,Geoffroy F,Horak E,Johnston PG,Allegra CJ: Determinants of trimetrexate lethality in human colon cancer cells. Br J Cancer 70: 1075–1084, 1994

    Google Scholar 

  50. Gollerkeri A,Chu E: Translational regulation of DHFR expression in human colon cancer RKO cells. Proc Am Assoc Cancer Res 42, 783: 4205a, 2001

    Google Scholar 

  51. Ercikan-Abali EA,Banerjee D,Skacel N,Scotto KW,Bertino JR: Cis-regulatory elements at the 5′UTR regulates the expression of dihydrfolate reductase (DHFR) at the translational level. Proc Am Assoc Cancer Res 39, 432: 2946a, 1998

    Google Scholar 

  52. Greenblatt MS,Bennett WP,Holstein M,Harris CC: Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54: 4855–4878, 1994

    Google Scholar 

  53. Harris CC,Hollstein M: Clinical implications of the p53 tumor-suppressor gene. NEngl J Med 329: 1318–1327, 1993

    Google Scholar 

  54. Levine AJ: p53, the cellular gatekeeper for growth and division. Cell 88: 323–331, 1997

    Google Scholar 

  55. Ko LJ,Prives C: p53: puzzle and paradigm. Genes Dev 10: 1054–1072, 1996

    Google Scholar 

  56. Vogelstein B,Kinzler KW: p53 function and dysfunction. Cell 70: 523–526, 1992

    Google Scholar 

  57. El-Deiry W,Tokino T,Velculescu VE,Levy DB, et al.: WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825, 1993

    Google Scholar 

  58. Bunz F,Dutriaux A,Lengauer C: Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282: 1497–1501, 1998

    Google Scholar 

  59. Maltzman W,Czyzyk L: UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol Cell Biol 4: 1689–1694, 1984

    Google Scholar 

  60. Shieh SY,Ikeda M,Taya Y,Prives C: DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91: 325–334, 1997

    Google Scholar 

  61. Gu W,Roeder RG: Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90: 595–606, 1997

    Google Scholar 

  62. Liu L,Scolnick DM,Trievel RC,Zhang HB,Marmorstein R,Halazonetis TD,Berger SL: p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol 19: 1202–1209, 1999

    Google Scholar 

  63. Sakaguchi K,Herrera JE,Saito W: DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev 12: 2831–2841, 1998

    Google Scholar 

  64. Kastan MB,Onyekwere O,Sidransky D,Vogelstein B,Craig RW: Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51: 6304–6311, 1991

    Google Scholar 

  65. Zhan QF,Carrier F,Fornace AJ: Induction of cellular p53 activity by DNA-damaging agents and growth arrest. Mol Cell Biol 13: 4242–4250, 1993

    Google Scholar 

  66. Fu L,Benchimol S: Participation of the human p53 3_UTR in translational repression and activation following gammairradiation. EMBO J 16: 4117–4125, 1997

    Google Scholar 

  67. Chu E,Copur SM,Ju J: Thymidylate synthase protein and p53 mRNA form an in vivo ribonucleoprotein complex. Mol Cell Biol 19: 1582–1594, 1999

    Google Scholar 

  68. Ju J,Pedersen-Lane J,Maley F,Chu E: Regulation of p53 expression by thymidylate synthase. Proc Natl Acad Sci USA 96: 3769–3774, 1999

    Google Scholar 

  69. Ju J,Chu E: Translational regulation of 5-FU induced p53 expression in human cancer RKO cells. Proc Am Assoc Cancer Res 41, 854: 5422a, 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitz, J.C., Liu, J., Lin, X. et al. Translational Regulation as a Novel Mechanism for the Development of Cellular Drug Resistance. Cancer Metastasis Rev 20, 33–41 (2001). https://doi.org/10.1023/A:1013100306315

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013100306315

Navigation