Skip to main content
Log in

The AERX™ Aerosol Delivery System

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. We describe the AERX aerosol delivery system, a new, bolus inhalation device that is actuated at preprogrammed values of inspiratory flow rate and inhaled volume. We report on its in vitro characterization using a particular set of conditions used in pharmacokinetic and scintigraphic studies.

Methods. Multiple doses of aerosol were delivered from single use collapsible plastic containers containing liquid formulation. The aerosol was generated by forcing the formulation under pressure through an array of 2.5 micron holes. Air was drawn through the device at 70 LPM, and the aerosol was collected onto a filter or Andersen cascade impactor. The emitted dose was quantified from the filter collection data, and the particle size distribution was obtained from the best fit log-normal distribution to the impactor data.

Results. 57.0 ± 5.9% of the dose of drug placed as an aqueous solution in the 45 μL collapsible container was delivered as an aerosol (n = 40). The best fit size distribution had an MMAD = (2.95 ± 0.06) μm and a geometric standard deviation σg = 1.24 ± 0.01 (n = 6).

Conclusions. The AERX aerosol delivery system generates a nearly monodisperse aerosol with the properties required for efficient and repeatable drug delivery to the lung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. P. R. Phipps, I. Gonda, S. D. Anderson, D. Bailey, and G. Bautovich. Eur. Respir. J. 7:1474–1482 (1994).

    Google Scholar 

  2. W. Stahlhofen, J. Gebhart, and J. Heyder. Am. Ind. Hyg. Assoc. J. 41:385–390 (1980).

    Google Scholar 

  3. S. P. Newman, A. Hollingworth, and A. R. Clark. International Journal of Pharmaceutics 102:127–132 (1994).

    Google Scholar 

  4. S. J. Farr, A. M. Rowe, R. Rubsamen, and G. Taylor. Thorax 50:639–644 (1995).

    Google Scholar 

  5. E. R. Weibel. Morphometry of the Human Lung. Springer-Verlag, Berlin, 1963.

    Google Scholar 

  6. G. Taylor. Adv. Drug Deliv. Rev. 5:37–61 (1990).

    Google Scholar 

  7. Task Group on Lung Dynamics. Health Phys. 12:173 (1966).

    Google Scholar 

  8. W. C. Hinds. Aerosol Technology. Wiley, New York, 1982.

    Google Scholar 

  9. N. R. Lindblad and H. M. Schneider. J. Sci. Inst. 42:635 (1965).

    Google Scholar 

  10. J. Plateau. Statique Experiemntale et Theorique Liquides soumis aux seules Forces Moleculaires. Gauthier-Villars, Paris, 1873.

    Google Scholar 

  11. J. W. S. Raleigh. Proc. London Math. Soc. 10:4–13 (1878).

    Google Scholar 

  12. E. Tyler, and F. Watkin. Phil. Mag. 14:849 (1932).

    Google Scholar 

  13. N. A. Fuchs. Evaporation and Droplet Growth in Gaseous Media. Pergamon Press, Oxford (1962).

    Google Scholar 

  14. G. A. Ferron, W. G. Kreyling, and B. Haider. J. Aerosol Sci. 19:611–631 (1987).

    Google Scholar 

  15. S. J. Farr, J. A. Schuster, P. M. Lloyd, L. J. Lloyd, J. K. Okikawa, and R. M. Rubsamen. In R. N. Dalby, P. R. Byron, and S. J. Farr (eds.), Respiratory Drug Delivery V, Interpharm Press, Inc., Buffalo Grove, 1996, pp. 175–185.

    Google Scholar 

  16. The United States Pharmacopeia, Rand McNally, Taunton, 1994.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Schuster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuster, J., Rubsamen, R., Lloyd, P. et al. The AERX™ Aerosol Delivery System. Pharm Res 14, 354–357 (1997). https://doi.org/10.1023/A:1012058323754

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012058323754

Navigation