Skip to main content
Log in

Pulmonary Bioavailability of a Phosphorothioate Oligonucleotide (CGP 64128A): Comparison with Other Delivery Routes

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Phosphorothioate antisense oligodeoxynucleotides are promising therapeutic candidates. When given systemically in clinical trials they are administered via slow intravenous infusion to avoid their putative plasma concentration-dependent haemodynamic side-effects. In this study, we have evaluated alternative parenteral and non-parenteral administration routes which have the potential to enhance the therapeutic and commercial potential of these agents.

Methods. The delivery of CGP 64128A by intravenous, subcutaneous, intra-peritoneal, oral and intra-tracheal (pulmonary) routes was investigated in rats using radiolabelled compound and supported by more specific capillary gel electrophoretic analyses.

Results. Intravenously administered CGP 64128A exhibited the rapid blood clearance and distinctive tissue distribution which are typical for phosphorothioate oligodeoxynucleotides. Subcutaneous and intra-peritoneal administration resulted in significant bioavailabilities (30.9% and 28.1% over 360 min, respectively) and reduced peak plasma levels when compared with intravenous dosing. Administration via the gastrointestinal tract gave negligible bioavailability (<2%). Intra-tracheal administration resulted in significant but dose-dependent bioavailabilities of 3.2, 16.5 and 39.8% at 0.06, 0.6 and 6.0 mg/kg, respectively.

Conclusions. Significant bioavailabilities of CGP 64128A were achieved following subcutaneous, intra-peritoneal and intra-tracheal administration. Pulmonary delivery represents a promising mode of non-parenteral dosing for antisense oligonucleotides. The dose-dependent increase in pulmonary bioavailability suggests that low doses may be retained in the lungs for local effects whereas higher doses may be suitable for the treatment of a broader spectrum of systemic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. P. C. Zamecnik and M. L. Stevenson, Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl. Acad. Sci. USA, 75:280–284 (1978).

    Google Scholar 

  2. C. Helene and J. J. Toulme. Specific regulation of gene expression by antisense, sense and antigene nucleic acids. Biochim. Biophys. Acta 1049:99–125 (1990).

    Google Scholar 

  3. S. T. Crooke Therapeutic Applications of Oligonucleotides. R. G. Landes Co., Austin, TX (1995).

    Google Scholar 

  4. K. A. Higgins, J. R. Perez, T. A. Coleman, K. Dorshkind, W. A. McComas, U. M. Sarmiento, C. A. Rosen, and R. Narayanan. Antisense inhibition of the p65 subunit of NF-KB blocks tumorigenicity and causes tumor regression. Proc. Natl. Acad. Sci. USA, 90:9901–9905 (1993).

    Google Scholar 

  5. B. P. Monia, J. F. Johnston, T. Geiger, M. Mueller, and D. Fabbro, Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against c-raf kinase. Nature Medicine 2:668–675 (1996).

    Google Scholar 

  6. N. M. Dean, R. McKay, L. Miraglia, R. Howard, S. Cooper, J. Giddings, P. L. Nicklin, L. Miester, R. Ziel, T. Geiger, M. Müller, and D. Fabbro. Inhibition of human tumor cell lines in nude mice by a antisense inhibitor of PKC-α expression. Cancer Res. 56:3499–3507 (1996).

    Google Scholar 

  7. S. Agrawal, Antisense oligonucleotides as antiviral agents. Trends Biotechnol. Sci. 10:152–157 (1992).

    Google Scholar 

  8. P. L. Nicklin, S. J. Craig, and J. Phillips. Pharmacokinetics of phosphorothioates in animals. Antisense Research and Applications, Stanley T. Crooke (Ed.), Handbook of Experimental Pharmacology, Springer-Verlag, Heidelberg. 131: in press (1998).

    Google Scholar 

  9. W. M. Galbraith, W. C. Hobson, P. C. Giclas, P. J. Schechter, and S. Agrawal. Complement activation and hemodynamic changes following intravenous administration of phosphorothioate oligonucleotides in the monkey. Antisense Res. Dev. 4:201–206 (1994).

    Google Scholar 

  10. A. A. Levin, D. K. Monteith, J. M. Leeds, P. L. Nicklin, R. S. Geary, M. Butler, M. V. Templin, and S. Henry. Toxicity of oligodeoxynucleotide therapeutic agents. Antisense Research and Applications, Stanley T. Crooke (Ed.), Handbook of Experimental Pharmacology, Springer-Verlag, Heidelberg. 131: in press (1998).

    Google Scholar 

  11. J. S. Patton and R. M. Platz. Pulmonary delivery of peptides and proteins for systemic action. Adv. Drug Delivery Rev. 8:176–196 (1992).

    Google Scholar 

  12. M. Mackay, J. A. Phillips, A. Steward, and J. G. Hastewell. Pulmonary absorption of therapeutic proteins and peptides, Respiratory Drug Delivery IV, pp 31–37. Eds. P. R. Byron, R. N. Dalby and S. J. Farr. Interpharm Press, IL 60089, USA (1994).

    Google Scholar 

  13. M. J. Graham, S. M. Freier, R. M. Crooke, D. J. Ecker, R. N. Maslova, and E. A. Lesnik. Tritium labeling of antisense oligonucleotides by exchange with tritiated water. Nucleic Acids Res. 21:3737–3743 (1993).

    Google Scholar 

  14. J. M. Leeds, M. J. Graham, L. Truong, and L. L. Cummins. Quantification of phosphorothioate oligonucleotides in human plasma. Anal. Biochem. 235:36–43 (1996).

    Google Scholar 

  15. S. T. Crooke, M. J. Graham, J. E. Zuckerman, D. Brooks, B. S. Conklin, L. L. Cummins, M. J. Greig, D. Kornburst, M. Manoharan, H. Sasmor, T. Schleich, K. L. Tivel, and R. Griffey. Pharmacokinetic properties of several oligonucleotide analogs in mice. J. Pharm. Exp. Ther. 277:923–937 (1996).

    Google Scholar 

  16. J. A. Phillips, S. J. Craig, D. Bayley, R. A. Christian, R. Geary, and P. L. Nicklin. Pharmacokinetics, metabolism and elimination of a 20-mer phosphorothioate oligodeoxynucleotide (CGP 69846a) after intravenous and subcutaneous administration. Biochem. Pharmacol. 54:657–668 (1997).

    Google Scholar 

  17. B. P. Monia, H. Sasmor, J. F. Johnston, S. M. Freier, E. A. Lesnik, M. Muller, T. Geiger, K.-H. Altmann, H. Moser, D. Fabbro. Sequence-specific antitumor activity of a phosphorothioate oligodeoxyribonucleotide targeted to human C-raf kinase supports an antisense mechanism of action in vivo. Proc. Natl. Acad. Sci. USA 93:15481–15484 (1996).

    Google Scholar 

  18. S. Agrawal, J. Temsamani, and J. Y. Tang. Pharmacokinetics, biodistribution and stability of oligodeoxynucleotide phosphorothioates in mice. Proc. Natl. Acad. Sci. USA. 88:7595–7599 (1991).

    Google Scholar 

  19. G. Goodarzi, M. Watabe, and K. Watabe. Organ distribution and stability of phosphorothioated oligodeoxyribonucleotides in mice. Biopharm. Drug. Dispos. 13:221–227 (1992).

    Google Scholar 

  20. P. Iversen. In vivo studies with phosphorothioate oligonucleotides: pharmacokinetics prologue. Anti-Cancer Drug Design. 6:531–538 (1991).

    Google Scholar 

  21. P. A. Cossum, H., Sasmor, D. Dellinger, L. Truong, L. Cummins, S. R. Owens, P. M. Markham, J. P. Shea, and S. T. Crooke. Disposition of the 14C-labeled phosphorothioate oligonucleotide ISIS 2105 after intravenous administration to rats. J. Pharm. Exp. Ther. 267:1181–1190 (1993).

    Google Scholar 

  22. H. Sands, L. J. Gorey-Feret, A. J. Cocuzza, F. W. Hobbs, D. Chidester, and G. L. Trainor. Biodistribution and metabolism of internally H-labeled oligonucleotides. 1. Comparison of a phosphodiester and a phosphorothioate. Mol. Pharmacol. 45:932–943 (1994).

    Google Scholar 

  23. S. Agrawal, J. Temsamani, W. Galbraith, and J. Tang. Pharmacokinetics of antisense oligonucleotides. Clin. Pharmacokinet. 28:7–16, (1995).

    Google Scholar 

  24. R. Zhang, R. B. Diasio, Z. Lu, T. Liu, Z. Jiang, W. M. Galbraith, and S. Agrawal. Pharmacokinetics and tissue distribution in rats of an oligodeoxynucleotide phosphorothioate (GEM-91) developed as a therapeautic agent for human immunodeficiency virus type-1. Biochem. Pharmacol. 49:929–939, (1995).

    Google Scholar 

  25. A. Rifai, W. Brysch, K. Fadden, J. Clark, and K.-H. Schlingensiepen. Clearance kinetics, biodistribution and organ saturability of phosphorothioate oligodeoxynucleotides in mice. Am. J. Pathol. 149: 717–725, (1996).

    Google Scholar 

  26. M. Pinto, S. Robine-Leon, M. D. Appay, M. Kedinger, N. Triadou, E. Dussalux, B. Lacroix, S. Assman, P. Haffen, J. Fogh, and A. Zweibaum. Enterocyte-like differentiation and polarisation of the human colon carcinoma cell line Caco-2 in culture. Biol. Cell 47:323–330 (1983).

    Google Scholar 

  27. P. L. Nicklin, W. J. Irwin, I. F. Hassan, I. Williamson, and M., Mackay. Permeable support type influences the transport of compounds across Caco-2 cells. Int. J. Pharm. 83: 197–209 (1992).

    Google Scholar 

  28. P. L. Nicklin, W. J. Irwin, I. F. Hassan, M. Mackay, and H. B. F. Dixon. The transport of acidic amino acids and their analogues across monolayers of human intestinal absorptive (Caco-2) cells in vitro. Biochim. et Biophys. Acta 1269:176–186 (1995).

    Google Scholar 

  29. G. F. Beck, W. J. Irwin, P. L. Nicklin, and S. Akhtar. Interactions of phosphodiester and phosphorothioate oligonucleotides with intestinal epithelial cells. Pharm. Res. 13:1028–1037 (1996).

    Google Scholar 

  30. P. Artursson and J. Karlsson. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem. Biophys. Res. Commn. 175:880–885 (1991).

    Google Scholar 

  31. S. Agrawal, X. Zhang, Z. Lu, H., Zhao, J. M. Tamburin, J. Yan, H. Cai, R. B. Diasio, I. Habus, Z., Jiang, R. P. Iyer, D. Yu, and R. Zhang. Absorption, tissue distribution and in vivo stability in rats of a hybrid antisense oligonucleotide following oral administration. Biochem. Pharmacol. 50:571–576 (1995).

    Google Scholar 

  32. R. Zhang, Z. Lu, H., Zhao, X. Zhang, R. B. Diasio, I. Habus, Z. Jiang, R. P. Iyer, D. Yu, and S. Agrawal. In vivo stability, disposition and metabolism of a “hybrid” oligonucleotide phosphorothioate in rats. Biochem. Pharmacol. 50:545–56 (1995).

    Google Scholar 

  33. J. W. Nyce, and W. J. Metzger. DNA antisense therapy for asthma in an animal model. Nature 385:721–725 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicklin, P.L., Bayley, D., Giddings, J. et al. Pulmonary Bioavailability of a Phosphorothioate Oligonucleotide (CGP 64128A): Comparison with Other Delivery Routes. Pharm Res 15, 583–591 (1998). https://doi.org/10.1023/A:1011934011690

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011934011690

Navigation