Skip to main content
Log in

Active Apical Secretory Efflux of the HIV Protease Inhibitors Saquinavir and Ritonavir in Caco-2 Cell Monolayers

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To investigate in vitro the mechanisms involved in the gastrointestinal absorption of the HIV protease inhibitor, saquinavir mesylate (Invirase®), whose oral bioavailability is low, variable, and significantly increased by co-administration with ritonavir, also an HIV protease inhibitor but with higher oral bioavailability.

Methods. Confluent epithelial layers of human Caco-2 cells mimicking the intestinal barrier.

Results. Both saquinavir and ritonavir showed polarized transport through Caco-2 cell monolayers in the basolateral to apical direction (secretory pathway), exceeding apical to basolateral transport (absorptive pathway) by factors of 50-70 and 15-25, respectively. Active efflux was temperature dependent, saturable and inhibited by verapamil and cyclosporin A. Saquinavir and ritonavir decreased each other's secretory permeability and hence elevated their net transport by the absorptive pathway.

Conclusions. Saquinavir and ritonavir are both substrates for an efflux mechanism in the gut, most likely P-glycoprotein, which acts as a counter-transporter for both drugs. Together with sensitivity to gut-wall metabolism by cytochrome P-450 3A, this may partially account for the low and variable oral bioavailability of saquinavir in clinical studies and for its increased bioavailability after co-administration with ritonavir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. S. Noble and D. Faulds. Saquinavir; A review of its pharmacology and clinical potential in the management of HIV infection. Drugs 52:93–112 (1996).

    PubMed  Google Scholar 

  2. J. M. Schapiro, M. A. Winters, F. Stewart, B. Efron, J. Norris, M. J. Kozal, and T. C. Merigan. The effect of high-dose saquinavir on viral load and CD4+ T-cell counts in HIV-infected patients. Ann. Intern. Med. 124:1039–1050 (1996).

    PubMed  Google Scholar 

  3. D. J. Kempf, K. C. Marsh, J. F. Denissen, et al. ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability in humans. Proc. Natl. Acad. Sci. USA 92:2484–2488 (1995).

    PubMed  Google Scholar 

  4. D. Norbeck, G. Kumar, K. Marsh, et al. Ritonavir and saquinavir: potential for two-dimensional synergy between HIV protease inhibitors (abstract no. LB-7). 35th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, 9 USA, Sep 17–20, (1995).

  5. A. Hsu, G. R. Grannermann, E. Sun, C P. Chen, T. El-Shourbagy, C. Locke, P. Barold, L. Carothers, G. Cao, J. Quian, D. Pizzuti, F. Stewart, and J. Leonard. Assessment of single-and multiple-dose interactions between ritonavir and saquinavir. XI. International Conference on AIDS, Vancouver, Canada, July. 7–12, (1996).

  6. U. A. Germann. P-glycoprotein — a mediator of multidrug resistance in tumour cells. Eur J. Cancer 32A:927–944 (1996).

    PubMed  Google Scholar 

  7. I. K. Pajeva, M. Wiese, H.-P. Cordes, and J. K. Seydel. Membrane interactions of some catamphiphilic drugs and relation to their multidrug-resistance-reversing ability. J. Cancer. Res. Clin. Oncol. 122:27–40 (1996).

    PubMed  Google Scholar 

  8. G. Ecker and P. Chiba. Structure-activity-relationship studies on modulators of the multidrug transporter P-glycoprotein — an overview. Wien. Klin. Wochenschr. 107/22:681–686 (1997).

    Google Scholar 

  9. J. Hunter, B. H. Hirst, and N. L. Simmons. Drug absorption limited by p-glycoprotein-mediated secretory drug transport in human intestinal epithelial Caco-2 cell layers. Pharm. Res. 10:743–749 (1993).

    PubMed  Google Scholar 

  10. G. Fricker, J. Drewe, J. Huwyler, H. Gutmann, and C. Beglinger. Relevance of p-glycoprotein for the enteral absorption of cyclosporin A: in vitro — in vivo correlation. Br. J. Pharmacol. 118:1841–1847 (1996).

    PubMed  Google Scholar 

  11. J. Hunter, M. A. Jepson, T. Tsuruo, N. L. Simmons, and B. H. Hirst. Functional expression of p-glycoprotein in apical membranes of human intestinal Caco-2 cells. J. Biol. Chem. 268:14991–14997 (1993).

    PubMed  Google Scholar 

  12. P. Wils, V. Phung Ba, A. Warnery, D. Lechardeur, S. Raeissi, I. J. Hidalgo, and D. Scherman. Polarized transport of docetaxel and vinblastine mediated by p-glycoprotein in human intestinal epithelial cell monolayers. Biochem. Pharmacol. 48:1528–1530 (1994).

    PubMed  Google Scholar 

  13. K. Hosoya, K. Kim, and V. H. Lee. Age-dependent expression of p-glycoprotein gp170 in Caco-2 cell monolayers. Pharm. Res. 13:885–890 (1996).

    PubMed  Google Scholar 

  14. J. Ficorilli, B. Anderson, F. Thompson, and J. D. Fondacaro. Effects of co-solvents on mannitol permeability in Caco-2 monolayers. Pharm. Res. 13Suppl S-411 (1996).

    Google Scholar 

  15. P. Artursson. Epithelial transport of drugs in cell culture. I: A model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells. J. Pharm. Sci. 79:476–482 (1990).

    PubMed  Google Scholar 

  16. P. Artursson, J. Karlsson, G. Ocklind, N. Schipper. Shaw, A. “Cell culture models of epithelia”. A practical approach. IRL Press, 1996, pp. 111–133.

  17. A. Tsuji, I. Tamai, A. Sakata, Y. Tenda, and T. Terasaki. Restricted transport of cyclosporin A across the blood-brain barrier by a multidrug transporter, P glycoprotein. Biochem. Pharmacol. 46:1096–1099 (1993).

    PubMed  Google Scholar 

  18. P. F. Augustijns, T. B. Bradshaw, L.-S. L. Gan, R. W. Hendren, and D. R. Thakker. Evidence for a polarized efflux system in Caco-2 cells capable of modulating cyclosporin A transport. Biochem. Biophys. Res. Comm. 197:360–365 (1993).

    PubMed  Google Scholar 

  19. G. Krishna, W. H. Barr, and C. O. Watlington. The evaluation of cytochrome P4503A4 activity in Caco-2 monolayers. Pharm. Res. 13Suppl: S–n439(1996).

    Google Scholar 

  20. L. S. Gan, M. A. Moseley, B. Khosla, P. F. Augustijns, T. P. Bradshaw, R. W. Hendren, and D. R. Thakker. CYP3A-like cytochrome P450-mediated metabolism and polarized efflux of cyclosporin A in Caco-2 cells. Drug. Metab. Dispos. 24:344–349 (1996).

    PubMed  Google Scholar 

  21. Hoffmann-La Roche (Welwyn). A four-week oral combination toxicity and toxicokinetic study of Ro31-89591/A12 (Saquinavir®) and A-84538 (Ritonavir) in dogs (1996) (Data on file).

  22. V. J. Wacher, C.-Y. Wu, and L. Z. Benet. Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy. Mol. Carcinogenesis 13:129–134 (1995).

    Google Scholar 

  23. L. Z. Benet, C.-Y. Wu, M. F. Henert, and V. J. Wacher. Intestinal drug metabolism and antitransport processes: a potential paradigm shift in oral drug delivery. J. Control. Release 39:139–143 (1996).

    Google Scholar 

  24. C. T. Ueda, M. Lamaire, G. Gsell, P. Misslin, and K. Nussbaumer. Apparent dose-dependent oral absorption of cyclosporin A in rats. Biopharm. Drug Dispos. 5:141–151 (1984).

    PubMed  Google Scholar 

  25. G. Moyle and B. Gazzard. Current knowledge and future prospects for the use of HIV protease inhibitors. Drugs 51:701–712 (1996).

    PubMed  Google Scholar 

  26. G. N. Kumar, A. D. Rodrigues, A. M. Buko, and J. F. Denissen. Cytochrome P450-mediated metabolism of the HIV-1 protease inhibitor ritonavir (ABT-538) in human liver microsomes. J. Pharmacol. Exp. Ther. 277:423–431 (1996).

    PubMed  Google Scholar 

  27. D. Leveque and F. Jehl. P-glycoprotein and pharmacokinetics. Anticancer Res. 15:331–336 (1995).

    PubMed  Google Scholar 

  28. A. Tsuji, I. Tamai, A. Sakata, Y. Tenda, and T. Terasaki. Restricted transport of cyclosporin A across the blood-brain barrier by a multidrug transporter, P-glycoprotein. Blochem. Pharmacol. 46:1096–1099 (1993).

    Google Scholar 

  29. J. Levin. Protease-Protease Studies: preliminary data from nelfinavir/saquinavir. NATAP Reports 1, Special Issue covering the 4th Conference on Retroviruses and Opportunistic Infections (1997).

  30. Nelfinavir: general information, study results (CD4 and viral load), dosing schedule, eating instructions, drug interactions, combination with other protease inhibitors and NNRTIs, side effects, resistance, cross resistance. Information provided by National AIDS Treatment Advocacy Project (NATAP) (1997) (http://www.aidsnyc.org/natap/drug/nelfpkg.html).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochem Alsenz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alsenz, J., Steffen, H. & Alex, R. Active Apical Secretory Efflux of the HIV Protease Inhibitors Saquinavir and Ritonavir in Caco-2 Cell Monolayers. Pharm Res 15, 423–428 (1998). https://doi.org/10.1023/A:1011924314899

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011924314899

Navigation