Skip to main content
Log in

Possible Role of Anion Exchanger AE2 as the Intestinal Monocarboxylic Acid/Anion Antiporter

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The purpose of the present study was to investigate the transport of organic monocarboxylic acids mediated by the anion exchanger AE2, which has been already reported to be present at several tissue cell membranes, including intestinal brush border membrane in rabbit.

Methods. Membrane transport of organic monocarboxylic acids by AE2 was investigated by transient AE2-gene expression in HEK 293 cells and subsequent uptake studies by the cells.

Results. Functional transfection of AE2 was confirmed by the enhanced 36C1 efflux from the cells. When preloaded with chloride anion, AE2-transfected cells demonstrated a significantly enhanced [14C]benzoic acid transport activity compared with mock-transfected cells. The AE2-mediated uptake was saturable with kinetic parameters of Km = 0.26 ± 0.08 mM and Vmax = 6.14 ± 0.52 nmol/mg protein/ 3 min, and the uptake of [14C]benzoic acid was pH-dependent with a maximal uptake at pH 6.5. AE2-mediated [14C]benzoic acid uptake was inhibited by Cl, HCO3 , and DIDS. AE2-transfected cells demonstrated significantly enhanced transport activity for nicotinic acid, propionic acid, butyric acid, and valproic acid as well as benzoic acid compared with mock-transfected cells.

Conclusions. AE2 is functionally involved in the anion antiport for organic monocarboxylic acids as well as inorganic anions and is supposed to play a partial role in the intestinal transport of organic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. A. Tsuji, M. T. Simanjutak, I. Tamai, and T. Terasaki. pH-Dependent intestinal transport of monocarboxylic acids: carrier-mediated and H+-cotransport mechanism versus pH-partition hypothesis. J. Pharm. Sci. 12:1123–1124 (1990).

    Google Scholar 

  2. M. T. Simanjutak, T. Terasaki, I. Tamai, and A. Tsuji. Participation of monocarboxylic anion and bicarbonate exchange system for the tranport of acetic and monocarboxylic acid drugs in the small intestinal brush-border membrane vesicles. J. Pharmacobio-Dyn. 14:501–508 (1991).

    PubMed  Google Scholar 

  3. A. Tsuji, H. Takanaga, I. Tamai, and T. Terasaki. Transcellular transport of benzoic acid across Caco-2 cells by a pH-dependent and carrier-mediated transport mechanism. Pharm. Res. 11:30–37 (1994).

    PubMed  Google Scholar 

  4. H. Takanaga, I. Tamai, and A. Tsuji. pH-dependent and carriermediated transport of salicylic acid across Caco-2 cells. J. Pharm. Pharmacol. 46:567–570 (1994).

    PubMed  Google Scholar 

  5. H. Takanaga, H. Maeda, H. Yabuuchi, I. Tamai, H. Higashida, and A. Tsuji. Nicotinic acid transport mediated by pH-dependent anion antiporter and proton cotransporter in rabbit intestinal brush-border membrane. J. Pharm. Pharmacol. 48:1073–1077 (1996).

    PubMed  Google Scholar 

  6. I. Tamai, H. Takanaga, H. Maeda, H. Yabuuchi, Y. Sai, Y. Suzuki, and A. Tsuji. Intestinal brush-border membrane transport of monocarboxylic acids mediated by proton-coupled transport and anion antiport mechanisms. J. Pharm. Pharmacol. 49:108–112 (1997).

    PubMed  Google Scholar 

  7. I. Tamai, H. Takanaga, H. Maeda, T. Ogihara, M. Yoneda, and A. Tsuji. Proton-cotransport of pravastatin across intestinal brush-border membrane. Pharm. Res. 12:1727–1732 (1995).

    PubMed  Google Scholar 

  8. I. Tamai, and A. Tsuji. Carrier-mediated approaches for oral drug delivery. Adv. Drug Delivery Rev. 20:5–32 (1996).

    Google Scholar 

  9. H. Takanaga, I. Tamai, S. Inaba, Y. Sai, H. Higashida, H. Yamamoto, and A. Tsuji. cDNA cloning and functional characterization of rat intestinal monocarboxylate transporter. Biochem. Biophys. Res. Commun. 217:370–377 (1995).

    PubMed  Google Scholar 

  10. I. Tamai, H. Takanaga, H. Maeda, Y. Sai, T. Ogihara, H. Higashida, and A. Tsuji. Participation of a proton-cotransporter, MCT1, in the intestinal transport of monocarboxylic acids. Biochem. Biophys. Res. Commun. 214:482–489 (1995).

    PubMed  Google Scholar 

  11. K. E. Kudrycki, P. R. Newman, and G. E. Shull. cDNA cloning and tissue distribution of mRNAs for two proteins that are related to the band 3 Cl/HCO3 exchanger. J. Biol. Chem. 265:462–471 (1990).

    PubMed  Google Scholar 

  12. D. R. Demuth, L. C. Showe, M. Ballantine, A. Palumbo, P. J. Fraser, L. Cioe, G. Rovera, and P. J. Curtis. Cloning and structural characterization of human non-erythroid band 3-like protein. EMBO J. 5:1205–1214 (1986).

    PubMed  Google Scholar 

  13. S. L. Alper, R. R. Kopito, S. M. Libresco, and H. F. Lodish. Cloning and characterization of a murine band 3-related cDNA from kidney and from a lymphoid cell line. J. Biol. Chem. 263:17092–17099 (1988).

    PubMed  Google Scholar 

  14. H. Gehrig, W. Muler, and H. Appelhans. Complete nucleotide sequence of band 3 related anion transport protein AE2 from human kidney. Biochim. Biophys. Acta 1130:326–328 (1992).

    PubMed  Google Scholar 

  15. A. E. Lindsey, K. Schneider, D. M. Simmons, R. Baron, B. S. Lee, and R. R. Kopito. Functional expression and subcellular localization of an anion exchanger cloned from choroid plexus. Proc. Natl. Acad. Sci. USA 87:5278–5282 (1990).

    PubMed  Google Scholar 

  16. A. Chow, J. W. Dobbins, P. S. Aronson, and P. Igarashi. cDNA cloning and localization of band 3-related protein from ileum. Am. J. Physiol. 263:G345–352 (1992).

    PubMed  Google Scholar 

  17. R. C. Poole and A. P. Halestrap. Transport of lactate and other monocarboxylates across mammalian plasma membrane. Am. J. Physiol. 264:C761–C782 (1993).

    PubMed  Google Scholar 

  18. N. Hamasaki, H. Matsuyama, and C. Hirota-Chigita. Characterization of phosphoenolpyruvate transport across the erythrocyte membrane. Eur. J. Biochem. 132:531–536 (1983).

    PubMed  Google Scholar 

  19. Y. Matsumoto and M. Ohsako. Transport of drugs through human erythrocyte membranes: pH dependence of drug transport through labeled human erythrocytes in the presence of band 3 protein inhibitor. J. Pharm. Sci. 81:428–431 (1992).

    PubMed  Google Scholar 

  20. T. Minami and D. J. Cutler. A kinetic study of the role of band 3 anion transport protein in the transport of salicylic acid and other hydroxybenzoic acids across the human erythrocyte membrane. J. Pharm. Sci. 81:424–427 (1992).

    PubMed  Google Scholar 

  21. M. Ohsako, Y. Matsumoto, and S. Goto. Transport of aspirin and its metabolites through human erythrocyte membrane. Biol. Pharm. Bull. 16:154–157 (1993).

    PubMed  Google Scholar 

  22. B. S. Lee, R. B. Gunn, and R. R. Kopito. Functional differences among nonerythroid anion exchangers expressed in a transfected human cell line. J. Biol. Chem. 266:11448–11454 (1991).

    PubMed  Google Scholar 

  23. F. L. Graham and J. Smiley. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36:59–72 (1977).

    PubMed  Google Scholar 

  24. F. L. Graham and A. J. van der Eb. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467 (1973).

    PubMed  Google Scholar 

  25. J. R. Sanes, J. L. R. Rubenatein, and J.-F. Nicolas. Use of a recombinant retrovirus to study post-implantation cell lineage in mouse embryos. EMBO J. 5:3133–3142 (1986).

    PubMed  Google Scholar 

  26. S. Ruetz, A. E. Lindsey, C. L. Ward, and R. R. Kopito. Functional activation of plasma membrane anion exchangers occurs in a pregolgi compartment. J. Cell Biol. 121:37–48 (1993).

    PubMed  Google Scholar 

  27. S.-T. Alan, C. Sardet, J. Pouyssegur, M. A. Schwartz, D. Brown, and S. L. Alper. Immunolocalization of anion exchanger AE2 and cation exchanger NHE-1 in distinct adjacent cells of gastric mucosa. Am. J. Physiol. 266:C559–568 (1994).

    PubMed  Google Scholar 

  28. I. Sekler, R. S. Lo, and R. R. Kopito. A conserved glutamate is responsible for ion selectivity and pH dependence of the mammalian anion exchanger AE1 and AE2. J. Biol. Chem. 270:28751–28758 (1995).

    PubMed  Google Scholar 

  29. I. Sekler, S. Kobayashi, and R. R. Kopito. A cluster of cytoplasmic histidine residues specifies pH dependence of the AE2 plasma membrane anion exchanger Cell 86:929–935 (1996).

    PubMed  Google Scholar 

  30. R. G. Knickelbein, P. S. Aronson, and J. W. Dobbins. Membrane distribution of sodium-hydrogen and chloride-bicarbonate exchangers in crypt and villus cell membranes from rabbit ileum. J. Clin. Invest. 82:2158–2163 (1988).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yabuuchi, H., Tamai, I., Sai, Y. et al. Possible Role of Anion Exchanger AE2 as the Intestinal Monocarboxylic Acid/Anion Antiporter. Pharm Res 15, 411–416 (1998). https://doi.org/10.1023/A:1011920213991

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011920213991

Navigation