Skip to main content
Log in

The Cerebrocortical Areas in Normal Brain Aging and in Alzheimer's Disease: Noticeable Differences in the Lipid Peroxidation Level and in Antioxidant Defense

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The markers of oxidative stress were measured in four cerebrocortical regions of Alzheimer's disease (AD) and age-matched control brains. In controls the levels of diene conjugates (DC) and lipid peroxides (LOOH) were significantly higher in the sensory postcentral and occipital primary cortex than in the temporal inferior or frontal inferior cortex. The antioxidant capacity (AOC) was highest in the temporal, and GSH in the frontal inferior cortex. The highest activity of superoxide dismutase (SOD) and catalase (CAT) was found in the occipital primary cortex. Compared with controls, significantly higher level of DC and LOOH and attenuated AOC were evident in AD temporal inferior cortex. In AD frontal inferior cortex moderate increase in LOOH was associated with positive correlation between SOD activity and counts of senile plaques. Our data suggest that in AD cerebral cortex, the oxidative stress is expressed in the reducing sequence: temporal inferior cortex > frontal inferior cortex > sensory postcentral cortex ≃ occipital primary cortex, corresponding to the histopathological spreading of AD from the associative to primary cortical areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Yankner, B. A., Dawes, L. R., Fisher, S., Villa-Komaroff, L., Oster-Granite M. L., and Neve, R. L. 1989. Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer's disease. Science 245:417–420.

    Google Scholar 

  2. McKee, A. C., Kowall, N. W., Schumacher, J. S., and Beal, M. F. 1998. The neurotoxicity of amyloid beta protein in aged primates. Amyloid 5:1–9.

    Google Scholar 

  3. Hensley, K., Carney, J. M., Mattson, M. P., Aksenova, M., Harris, M. E., Wu, J. F., Floyd, R. A., and Butterfield, D. A. 1994. A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer's disease. Proc. Natl. Acad. Sci. USA 91:3270–3274.

    Google Scholar 

  4. Hensley, K., Butterfield, D. A., Hall, N., Cole, P., Subramaniam, R., Mark, R., Mattson, M. P., Markesbery, W. R., Harris M. E., and Aksenov, M. 1996. Reactive oxygen species as causal agents in the neurotoxicity of the Alzheimer's diseaseassociated beta peptide. Ann. NY Acad. Sci. 786:120–134.

    Google Scholar 

  5. Multhaup, G., Ruppert, T., Schlicksupp, A., Hesse, L., Beher, D., Masters, C. L., and Beyreuther, K. 1997. Reactive oxygen species and Alzheimer's disease. Biochem. Pharmacol. 54: 533–539.

    Google Scholar 

  6. Smith, M. A., Rottkamp, C. A., Nunomura, A., Raina, A. K., and Perry, G. 2000. Oxidative stress in Alzheimer's disease. Biochim. Biophys. Acta 1502:139–144.

    Google Scholar 

  7. Dyrks, T., Dyrks, E., Hartmann, T., Masters, C., and Beyreuther, K. 1992. Amyloidogenicity of beta A4 and beta A4-bearing amyloid protein precursor fragments by metal-catalyzed oxidation. J. Biol. Chem. 267:18210–18217.

    Google Scholar 

  8. Dickson, D. W. 1997. The pathogenesis of senile plaques. J. Neuropathol. Exp. Neurol. 56:321–329.

    Google Scholar 

  9. Yan, S. D., Chen, X., Schmidt, A. M., Brett, J., Godman, G., Zou, Y. S., Scott, C. W., Caputo, C., Frappier, T., and Smith, M. A. 1994. Glycated tau protein in Alzheimer disease: a mechanism for induction of oxidant stress. Proc. Natl. Acad. Sci. USA 91:7787–7791.

    Google Scholar 

  10. Smith, C. D., Carney, J. M., Starke-Reed, P. E., Oliver, C. N., Stadtman, E. R., Floyd, R. A., and Markesbery, W. R. 1991. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc. Natl. Acad. Sci. USA 88: 10540–10543.

    Google Scholar 

  11. Lovell, M. A., Ehman, W. D., Butler, S. M., and Markersbury, W. R. 1995. Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer's disease. Neurology 45:1594–1601.

    Google Scholar 

  12. Lyras, L., Cairns, N. J., Jenner, A., Jenner, P., and Halliwell, B. 1997. An assessment of oxidative damage to proteins, lipids, and DNA in brain from patients with Alzheimer's disease. J. Neurochem. 68:2061–2069.

    Google Scholar 

  13. Marcus, D. L., Thomas, C., Rodriguez, C., Simberkoff, K., Tsai, J. S., Strafaci, J. A., and Freedman, M. L. 1998. Increased peroxidation and reduced antioxidant enzyme activity in Alzheimer's disease. Exper. Neurol. 150:40–44.

    Google Scholar 

  14. Famulari, A. L., Marschoff, E. R., Llesuy, A. F., Kohan, S., Serra, J. A., Dominquez, R. O., Repetto, M., Reides, C., and Sacerdote deLustig, E. 1996. The antioxidant enzymatic blood profile in Alzheimer's and vascular diseases. Their association and a possible assay to differentiate demented subjects and controls. J. Neurol. Sci. 141:69–78.

    Google Scholar 

  15. Thome, J., Gsell, W., Rösler, M., Kornhuber, J., Frölich, L., Hashimoto, E., Zielke, B., Wiesbeck, G. A., and Riederer, P. 1997. Oxidative-stress associated parameters (lactoferrin, superoxide dismutases) in serum of patients with Alzheimer's disease. Life Sci. 60:13–19.

    Google Scholar 

  16. Van Hoesen, G. W. 1997. Cortical feedforward and cortical feedback neural systems in Alzheimer's disease. Pages 17–31, in Hyman, B. T., Duyckaerts, C., Christen, Y. (eds.), Connections, Cognition and Alzheimer's Disease, Springer-Verlag, Heidelberg.

    Google Scholar 

  17. Braak, H., Braak, E., Bohl, J., and Bratzke, H. 1998. Evolution of Alzheimer's disease related cortical lesions. J. Neural Transm. Suppl. 54:97–106.

    Google Scholar 

  18. Small, G. W., Mazziotta, J. C., Collins, M. T., Baxter, L. R., Phelps, M. E., Mandelkern, M. A., Kaplan, A., La Rue, A., Adamson, C. F., and Chang, L. 1995. Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. JAMA 273:942–947.

    Google Scholar 

  19. Butterfield, D. A., Howard, B., Yatin, S., Koppal, T., Drake, J., Hensley, K., Aksenov, M., Aksenova, M., Subramaniam, R., Varadarajan, S., Harris-White, M. E., Pedigo, N. W. Jr., and Carney, J. M. 1999. Elevated oxidative stress in models of normal brain aging and Alzheimer's disease. Life Sci. 65: 1883–1992.

    Google Scholar 

  20. Venarucci, D., Venarucci, V., Vallese, A., Battila, L., Casado, A., De la Torre, R., and Lopez Fernandez, M. E. 1999. Free radicals: important cause of pathologies refer to ageing. Panminerva Med. 41:335–339.

    Google Scholar 

  21. Reed, D. J. 1990. Glutathione: toxicologic implications. Annu. Rev. Pharmacol. Toxicol. 30:603–631.

    Google Scholar 

  22. Schulz, J. B., Lindenau, J., Seyfried, J., and Dichgans, J. 2000. Glutahione, oxidative stress and neurodegeneration. Eur. J. Biochem. 267:4904–4911.

    Google Scholar 

  23. Bannister, J. V., Bannister, W. H., and Rotilio, G. 1987. Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit. Rev. Biochem. 22:111–180.

    Google Scholar 

  24. Cochrane, C. G. 1991. Cellular injury by oxidants. Am. J. Med. 91:23S–30S.

    Google Scholar 

  25. Matés, J. M. and Sànchez-Jimenéz, F. 1999. Antioxidant enzymes and their implications in pathophysiologic processes. Front. Biosci. 4:D339–345.

    Google Scholar 

  26. McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., and Stadlan, E. M. 1984. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of department of health and human services task forces on Alzheimer's disease. Neurology, 34:939–944.

    Google Scholar 

  27. Mirra, S. S., Heyman, A., and McKeel, D. 1991. The Consortium to establish a registry for Alzheimer's Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's Disease. Neurology 41:479–486.

    Google Scholar 

  28. Bogdanovic, N. and Morris, J. C. 1995. Diagnostic criteria for Alzheimer's Disease in Multicentre Brain Banking. Pages 20–29, in Cruz-Sanchez, F. F., Ravid, R., and Cuziner, M. L. (eds.) Neuropathological diagnostic criteria for Brain Banking. Biomedical and Health Research Series, vol. 10, IOS Press, Amsterdam.

    Google Scholar 

  29. Amstrong, D. (ed.) 1998. Free radical and antioxidant protocols. Introduction. Pages v–viii, in Methods in Molecular Biology, vol. 108, Humana Press, New Jersey.

  30. Halliwell, B. and Gutteridge, J. M. C. 1999. Free radicals in biology and medicine. Oxford University Press, Oxford.

    Google Scholar 

  31. Starkopf, J., Zilmer, K., Vihalemm, T., Kullisaar, T., Zilmer, M., and Samarütel J. 1995. Time course study of oxidative stress during open hart surgery. Scand. J. Thor. Cardiovasc. Surg. 29:181–186.

    Google Scholar 

  32. Ohkawa, H., Ohishi, N., and Yagi, K. 1979. Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95:351–358.

    Google Scholar 

  33. Ristimäe, T., Zilmer, M., Zilmer, K., Kairane, C., Kullisaar, T., and Teesalu, R. 1999. Effect of low-dose aspirin on the markers of oxidative stress. Cardiovasc. Drugs Ther. 13:485–490.

    Google Scholar 

  34. Bhat, G. B., Tinsley, S. B., Tolson, J. K., Bath, J. M., and Block, E. R. 1992. Hypoxia increases the susceptibility of pulmonary artery endothelial cells to hydrogen peroxide injury. J. Cell. Physiol. 151:228–238.

    Google Scholar 

  35. Goth, L. 1991. A simple method for the determination of serum catalase activity and revision of reference range. Clin. Chim. Acta 196:143–152.

    Google Scholar 

  36. Lowry, O. H., Rosenburg, N. L., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  37. Fröhlich, L. and Riederer, P. 1995. Free radical mechanisms in dementia of Alzheimer type and the potential for antioxidative treatment. Arzneimittelforsch. 45:443–446.

    Google Scholar 

  38. Smith, M. A., Rottkamp, C. A., Nunomura, A., Raina, A. K., and Perry, G. 2000. Oxidative stress in Alzheimer's disease. Biochim. Biophys. Acta 1502:139–144.

    Google Scholar 

  39. Cummings, J. L. 2000. Cognitive and behavioral heterogeneity in Alzheimer's disease: seeking the neurobiological basis. Neurobiol. Aging 21:845–861.

    Google Scholar 

  40. Perry, G., Raina, A. K., Nunomura, A., Wataya, T., Sayre, L. M., and Smith, M. A. 2000. How important is oxidative damage? Lessons from Alzheimer's disease. Free Rad. Biol. Med. 28:831–834.

    Google Scholar 

  41. Smith, M. A., Rudnicka-Nawrot, M., Richey, P. L., Praprotnik, D., Mulvihill, P., Miller, C. A., Sayre, L. M., and Perry, G. 1995. Carbonyl-related posttranslational modification of neurofilament protein in the neurofibrillary pathology of Alzheimer's disease. J. Neurochem. 64:2660–2666.

    Google Scholar 

  42. Geddes, J. W., Wilson, M. C., Miller, F. D., and Cotman, C. W. 1990. Molecular markers of reactive plasticity. Adv. Exp. Med. Biol. 268:425–432.

    Google Scholar 

  43. Papolla, M. A., Sos, M., Omar, R. A., and Sambamurti, K. 1996. The heat shock/oxidative stress connection. Relevance to Alzheimer disease. Mol. Chem. Neuropathol. 28:21–34.

    Google Scholar 

  44. Hoff, P. R., Cox, K., and Morrison, J. H. 1990. Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer disease: I. Superior frontal and inferior temporal cortex. J. Comp. Neurol. 301:44–54.

    Google Scholar 

  45. Yoo, B. C., Seidl, R., Cairns, N., and Lubec, G. 1999. Heatshock protein 70 levels in brain of patients with Down syndrome and Alzheimer's disease. J. Neural. transm. Suppl. 57: 315–322.

    Google Scholar 

  46. Rehfeld, J. F. and Nielsen, F. C. 1995. Molecular forms and regional distribution of cholecytokinin in the central nervous system. Pages 33–56, in Bradwejn, J. and Vasar, E. (eds.), Neuroscience Intelligence Unit. Cholecytokinin and anxiety: from neuron to behaviour. R.G. Landes Company, Austin.

    Google Scholar 

  47. Palmer, A. M. and Burns, M. A. 1994. Selective increase in lipid peroxidation in the inferior temporal cortex in Alzheimer's disease. Brain Res., 645:338–342.

    Google Scholar 

  48. McIntosh, L. J., Trush, M. A., and Troncoso, J. C. 1997. Increased susceptibility of Alzheimer's disease temporal cortex to oxygen free radical-mediated processes. Free Rad. Biol. Med. 23:183–190.

    Google Scholar 

  49. Markesbery, W. R. 1999. The role of oxidative stress in Alzheimer's disease. Arch. Neurol. 56:1449–1452.

    Google Scholar 

  50. Schulz, J. B., Lindenau, J., Seyfried, J., and Dichgans, J. 2000. Glutahione, oxidative stress and neurodegeneration. Eur. J. Biochem. 267:4904–4911.

    Google Scholar 

  51. Kang, Y., Wiswanath, V., Jha, N., Qiao, X., Mo, J. Q., and Andersen, J. K. 1999. Brain gamma-glutamyl cysteine synthetase (GCS) mRNA expression patterns correlate with regional-specific enzyme activities and glutathione levels. J. Neurosci. Res. 58: 436–441.

    Google Scholar 

  52. Chen, L., Richardson, J. S., Caldwell, J. E., and Ang, L. C. 1994. Regional brain activity of free radical defense enzymes in autopsy samples from patients with Alzheimer's disease and from nondemented controls. Int. J. Neurosci. 75:83–90.

    Google Scholar 

  53. Furuta, A., Price, D. L., Pardo, C. A., Troncoso, J. C., Xu, Z.-S., Taniguchi, N., and Martin, L. J. 1995. Localization of superoxide dismutases in Alzheimer's disease and Down's syndrome neocortex. Am. J. Pathol. 146:357–367.

    Google Scholar 

  54. Smith, M. A., Sayre, L. M., Monnier, V. M., and Perry, G. 1996. Oxidative posttranslational modifications in Alzheimer disease. A possible pathogenic role in the formation of senile plaques and neurofibrillary tangles. Mol. Chem. Neuropathol. 28:41–48.

    Google Scholar 

  55. Behl, C. 1999. Alzheimer's disease and oxidative stress: implications for novel therapeutic approaches. Prog. Neurobiol. 57: 301–323.

    Google Scholar 

  56. Albers, D. S. and Beal, M. F. 2000. Mitochondrial dysfunction and oxidative stress in aging and neurodegenerative diseases. J. Neural. Transm. Suppl. 59:133–154.

    Google Scholar 

  57. Duyckaerts, C., Colle, M. A., Dessi, F., Piette, F., and Hauw, J. J. 1998. Progression of Alzheimer histopathological changes. Acta Neurol. Belg. 98:180–185.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karelson, E., Bogdanovic, N., Garlind, A. et al. The Cerebrocortical Areas in Normal Brain Aging and in Alzheimer's Disease: Noticeable Differences in the Lipid Peroxidation Level and in Antioxidant Defense. Neurochem Res 26, 353–361 (2001). https://doi.org/10.1023/A:1010942929678

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010942929678

Navigation