Skip to main content
Log in

Emerging Class III Antiarrhythmic Agents:Mechanism of Action and Proarrhythmic Potential

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

The goal of developing an antiarrhythmic agent effective against malignant ventricular arrhythmias while maintaining a low side-effect profile remains elusive. The class III drugs amiodarone and sotalol are the best available agents. However, both drugs possess properties outside the realm of a pure class III effect, and their use is limited by a variety of dose-related side effects. There are several drugs with more selective class III properties currently in development. This review provides an overview of the optimal characteristics of an effective theoretical class III drug and a summary of the properties of a number of class III drugs under active investigation. An ideal class III antiarrhythmic agent for a reentrant arrhythmia should provide use-dependent prolongation of the action potential duration with slow onset and rapid offset kinetics. This drug would prolong the effective refractory period of cardiac tissue selectively at the rapid heart rates achieved during ventricular tachycardia or fibrillation with a delayed onset of action, and a rapid resolution of its effects on resumption of physiologic heart rates. With little effect on the refractory period at normal or slow heart rates, the ability to induce torsade de pointes would be lessened. In contrast to these ideal properties, most currently available and investigational agents have a reverse use-dependent effect on the action potential duration, producing more effects on the refractory period at slower heart rates. This property results in part from preferential block of the rapidly activating component of the delayed rectifier potassium channel (I_Kr), with little or no effect on the slowly activating component (I_Ks). The development of a drug with favorable blocking kinetics that selectively blocks I_Ks may result in lower proarrhythmic events while still maintaining effective antiarrhythmic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kremers MS, Black WH, Wells PJ. Sudden cardiac death: Etiologies, pathologies, and treatment. Dis Month 1989;35:391–445.

    Google Scholar 

  2. Fogoros R, Elson JJ, Bonnet CA, Fiedler SB, Burkholder JA. Efficacy of the automatic implantable cardioverter-defibrillator in prolonging survival in patients with severe underlying cardiac disease. J Am Coll Cardiol 1990;16:381–386.

    Google Scholar 

  3. Powell AC, Fuchs T, Finkelstein DM, et al. Influence of implantable cardioverter-defibrillators on the long-term prognosis of survivors of out-of-hospital cardiac arrest. Circulation 1993;88:1083–1092.

    Google Scholar 

  4. Echt DS, Lievson PR, Mitchell B, et al. Mortality and morbidity in patients receiving encainide, flecainide, or placebo. N Engl J Med 1991;324:781–788.

    Google Scholar 

  5. The Cardiac Arrhythmia Suppression Trial II Investigators. Effect of the antiarrhythmic agent moricizine on survival after myocardial infarction. N Engl J Med 1992;327:227–233.

    Google Scholar 

  6. Mason JW. A comparison of electrophysiologic testing with Holter monitoring to predict antiarrhythmic-drug efficacy for ventricular tachyarrhythmias. N Engl J Med 1993;329:445–451.

    Google Scholar 

  7. The CASCADE Investigators. Randomized antiarrhythmic drug therapy in survivors of cardiac arrest. Am J Cardiol 1993;72:280–287.

    Google Scholar 

  8. Burkart F, Pfisterer M, Kiowski W, Follath F, Burckhardt D. Effect of antiarrhythmic therapy on mortality in survivors of myocardial infarction with asymptomatic complex ventricular arrhythmias: Basel Antiarrhythmic Study of Infarct Survival (BASIS). J Am Coll Cardiol 1990;16:1711–1718.

    Google Scholar 

  9. Ceremuzynski L, Kleczar E, Krzeminska-Pakula M, et al. Effect of amiodarone on mortality after myocardial infarction: A double-blind, placebo-controlled, pilot study. J Am Coll Cardiol 1992;20:1056–1062.

    Google Scholar 

  10. Cairns JA, Connolly SJ, Gent M, Roberts R. Post-myocardial infarction mortality in patients with ventricular premature depolarizations. Circulation 1991;84:550–557.

    Google Scholar 

  11. Pfisterer ME, Kiowski W, Brunner H, Burckhardt D, Burkart F. Long-term benefit of 1-year amiodarone treatment for persistent complex ventricular arrhythmias after myocardial infarction. Circulation 1993;87:309–311.

    Google Scholar 

  12. Zarembski DG, Nolan PE, Slack MK, Caruso AC. Empiric long-term amiodarone prophylaxis following myocardial infarction. Arch Intern Med 1993;153:2661–2667.

    Google Scholar 

  13. European Myocardial Infarction Amiodarone Trial (EMIAT). Paper presented at the American College of Cardiology, March 1996.

  14. Canadian Amiodarone Myocardial Infarction Arrhythmia Trial (CAMIAT). Paper presented at the American College of Cardiology, March 1996

  15. Waldo AL, Camm AJ, de Ruyter H, et al. Preliminary mortality results from the Survival With Oral d-Sotalol (SWORD) trial (abstr). J Am Coll Cardiol 1995;25:15.

    Google Scholar 

  16. Dukes ID, Cleemann L, Morad M. Tedisamil blocks the transient and delayed rectifier K+ currents in mammalian cardiac and glial cells. J Pharmacol Exp Ther 1990;254:560–569.

    Google Scholar 

  17. Fermini B, Wang Z, Duan D, Nattel S. Differences in rate dependence of transient outward current in rabbit and human atrium. Am J Physiol 1992;263:H1747–H1754.

    Google Scholar 

  18. Coraboeuf E, Carmeliet E. Existence of two transient outward currents in sheep cardiac purkinje fibers. Pflugers Arch 1982;392:352–359.

    Google Scholar 

  19. Tseng G, Hoffman BF. Two components of transient outward current in canine ventricular myocytes. Circ Res 1989;64:633–647.

    Google Scholar 

  20. Escande D, Couloumbe A, Faivre J, Deroubaix E, Coraboeuf E. Two types of transient outward currents in adult human atrial cells. Am J Physiol 1987;252:H142–H148.

    Google Scholar 

  21. Zygmunt AC, Gibbons WR. Calcium-activated chloride current in rabbit ventricular myocytes. Circ Res 1991;68:424–437.

    Google Scholar 

  22. Patlak JB, Ortiz M. Slow currents through single sodium channels of adult rat heart. J Gen Physiol 1985;86:89–104.

    Google Scholar 

  23. Kiehn J, Villena P, Beyer T, Brachmann J. Differential effects of the new class III agent dofetilide on potassium currents in guinea pig cardiomyocytes. J Cardiovasc Pharmacol 1994;24:566–572.

    Google Scholar 

  24. Noble D, Tsien RW. Outward membrane currents activated in the plateau range of potentials in cardiac purkinje fibres. J Physiol 1969;200:205–231.

    Google Scholar 

  25. Shirer A, Clay JR. Repolarization currents in embryonic chick atrial heart cell aggregates. Biophys J 1986;50:861–874.

    Google Scholar 

  26. Fedida D, Wible B, Wang Z, et al. Identity of a novel delayed rectifier current from human heart with a cloned K+ channel current. Circ Res 1993;73:210–216.

    Google Scholar 

  27. Wang Z, Fermini B, Nattel S. Delayed rectifier outward current and repolarization in human atrial myocytes. Circ Res 1993;73:276–285.

    Google Scholar 

  28. Wang Z, Fermini B, Nattel S. Rapid and slow components of delayed rectifier current in human atrial myocytes. Cardiovasc Res 1994;28:1540–1546.

    Google Scholar 

  29. Scamps F, Carmeliet E. Delayed K+ current and external K+ in single cardiac purkinje cells. Am J Physiol 1989;257:C1086–C1092.

    Google Scholar 

  30. Kleiman RB, Houser SR. Outward currents in normal and hypertrophied feline ventricular myocytes. Am J Physiol 1989;256:H1450–H1461.

    Google Scholar 

  31. Hume JR, Giles W, Robinson K, et al. A time-and voltage-dependent K+ current in single cardiac cells from bullfrog atrium. J Gen Physiol 1986;88:777–98.

    Google Scholar 

  32. Shimoni Y, Clark RB, Giles WR. Role of an inwardly rectifying potassium current in rabbit ventricular action potential. J Physiol 1992;448:709–27.

    Google Scholar 

  33. Hondeghem LM. Computer aided development of antiarrhythmic agents with class IIIa properties. J Cardiovasc Electrophysiol 1994;5:711–21.

    Google Scholar 

  34. Moczydlowski E. Analysis of drug action at single-channel level. In: Rudy B, Iverson LE, eds. Methods in Enzymology, Vol. 207. San Diego, CA: Academic Press, 1992:791–806.

    Google Scholar 

  35. Carmeliet E. Use-dependent block and use-dependent unblock of the delayed rectifier K+ current by almokalant in rabbit ventricular myocytes. Circ Res 1993;73:857–68.

    Google Scholar 

  36. Colquhoun D, Hawkes AG. The principles of the stochastic interpretation of ion-channel mechanisms. In: Sakmann G, Neher E, eds. Single Channel Recording. New York: Plenum, 1983:135–175.

    Google Scholar 

  37. Colatsky TJ, Follmer CH, Stramer CF. Channel specificity in antiarrhythmic drug action. Circulation 1990;82:2235–42.

    Google Scholar 

  38. Chadwick CC, Ezrin AM, O'Connor B, et al. Identification of a specific radioligand for the cardiac rapidly activating delayed rectifier K+ channel. Circ Res 1993;72:707–714.

    Google Scholar 

  39. Jurkiewicz NK, Sanguinetti MC. Rate-dependent prolongation of cardiac action potentials by a methanesulfonilide class III antiarrhythmic agent. Circ Res 1993;72:75–83.

    Google Scholar 

  40. Krafte DS, Volberg WA. Voltage dependence of cardiac delayed rectifier block by methanesulfonamide class III antiarrhythmic agents. J Cardiovasc Pharmacol 1994;23:37–41.

    Google Scholar 

  41. Ohler A, Amos GJ, Wettwer E, Ravens U. Frequency-dependent effects of E-4031, almokalant, dofetilide and tedisamil on action potential duration: No evidence for “reverse use dependent” block. Naunyn Schmiedebergs Arch Pharmacol 1994;349:602–610.

    Google Scholar 

  42. Carmeliet E. Use-dependent block of the delayed K+ current in rabbit ventricular myocytes. Cardiovasc Drugs Ther 1993;7:599–604.

    Google Scholar 

  43. Rasmussen HS, Allen MJ, Blackburn KJ, Butrous GS, Dalrymple HW. Dofetilide, a novel class III antiarrhythmic agent. J Cardiovasc Pharmacol 1992;20(Suppl 2):S96–S105.

    Google Scholar 

  44. Gwilt M, Blackburn KJ, Burges RA, Higgins AJ, Milne AA, Solca AM. Electropharmacology of dofetilide, a new class III agent, in anaesthetized dogs. Eur J Pharmacol 1992;215:137–144.

    Google Scholar 

  45. Gwilt M, RC King, Milne AA, Solca AM. Dofetilide, a new class III antiarrhythmic agent, reduces pacing induced heterogeneity of repolarization in vivo. Cardiovasc Res 1992;26:1102–1108.

    Google Scholar 

  46. Tham TCK. MacLennan BA, Burke MT, Harron DWG. Pharmacodynamics and pharmacokinetics of the class III antiarrhythmic agent dofetilide (UK-68, 798) in humans. J Cardiovasc Pharmacol 1993;21:507–512.

    Google Scholar 

  47. Sedgwick ML, Rasmussen HS, Cobbe SM. Clinical and electrophysiologic effects of intravenous dofetilide (UK-68,798), a new class III antiarrhythmic drug, in patients with angina pectoris. Am J Cardiol 1992;69:513–517.

    Google Scholar 

  48. Sedgwick ML, Rasmussen HS, Cobbe SM. Effects of the class III antiarrhythmic drug dofetilide on ventricular monophasic action potential duration and QT interval dispersion in stable angina pectoris. Am J Cardiol 1992;70:1432–1437.

    Google Scholar 

  49. Yuan S, Wohlfart B, Rasmussen HS, Olsson S, Blomstrom-Lundqvist C. Effect of dofetilide on cardiac repolarization in patients with ventricular tachycardia. Eur Heart J 1994;15:514–522.

    Google Scholar 

  50. Suttorp MJ, Polak PE, van't Hof A, Rasmussen HS, Dunselman PH, Kingma JH. Efficacy and safety of a new selective class III antiarrhythmic agent dofetilide in paroxysmal atrial fibrillation or atrial flutter. Am J Cardiol 1992;69:417–419.

    Google Scholar 

  51. Sedgwick ML, Lip G, Rae AP, Cobb SM. Chemical cardioversion of atrial fibrillation with intravenous dofetilide. Int J Cardiol 1195;49:59–166.

    Google Scholar 

  52. Bashir Y, Thomsen PEB, Kingma JH, et al. Electrophysiologic profile and efficacy of intravenous dofetilide (UK-68,798), a new class III antiarrhythmic drug, in patients with sustained monomorphic ventricular tachycardia. Am J Cardiol 1995;76:1040–1044.

    Google Scholar 

  53. Echt DS, Lee JT, Murray KT, et al. A randomized, double-blind, placebo-controlled, dose-ranging study of dofetilide in patients with inducible sustained ventricular tachyarrhythmias. J Cardiovasc Electrophysiol 1995;6:687–699.

    Google Scholar 

  54. Sanguinetti MC Jurkiewicz NK. Two components of cardiac delayed rectifier K+ current. J Gen Physiol 1990;96:195–215.

    Google Scholar 

  55. Wettwer E, Scholtysik G, Schaad A, Himmel H, Ravens U. Effects of the new class III antiarrhythmic drug E-4031 on myocardial contractility and electrophysiological parameters. J Cardiovasc Pharmacol 1991;17:480–487.

    Google Scholar 

  56. Sanguinetti MC, Jurkiewicz NK, Scott A, Siegl PKS. Isoproterenol antagonizes prolongation of refractory period by the class III antiarrhythmic agent E-4031 in guinea pig myocytes. Circ Res 1991;68:77–84.

    Google Scholar 

  57. Martin CL, Chinn K. Contribution of delayed rectifier and inward rectifier to repolarization of the action potential: Pharmacologic separation. J Cardiovasc Pharmacol 1992;19:830–837.

    Google Scholar 

  58. Chi L, Mu D, Lucchesi BR. Electrophysiology and antiarrhythmic actions of E-4031 in the experimental animal model of sudden coronary death. J Cardiovasc Pharmacol 1991;17:285–295.

    Google Scholar 

  59. Ogawa S, Mitamura H, Katoh H. Effect of E-4031, a new class III antiarrhythmic drug, on reentrant ventricular arrhythmias: Comparison with conventional class I drugs. Cardiovasc Drugs Ther 1993;7:621–626.

    Google Scholar 

  60. Lynch JJ, Heaney LA, Wallace AA, Gehret JR, Selnick HG, Stein RB. Suppression of lethal ischemic ventricular arrhythmias by the class III agent E-4031 in a canine model of previous myocardial infarction. J Cardiovasc Pharmacol 1990;15:764–775.

    Google Scholar 

  61. Adaniya H, Hiraoka M. Effects of a novel class III antiarrhythmic agent, E-4031, on reentrant tachycardias in rabbit right atrium. J Cardiovasc Pharmacol 1990;15:976–982.

    Google Scholar 

  62. Shimizu A, Kaibara M, Centurion OA, et al. Electrophysiologic effects of a new class III antiarrhythmic agent, E-4031, on atrial flutter, atrial refractoriness, and conduction delay in a canine sterile pericarditis model. J Cardiovasc Pharmacol 1993;21:656–662.

    Google Scholar 

  63. Inoue H, Yamashita T, Usui M, Nozaki A, Sugimoto T. Antiarrhythmic drugs preferentially produce conduction block at the area of slow conduction in the reentrant circuit of canine atrial flutter: Comparative study of disopyramide, flecainide, and E-4031. Cardiovasc Res 1991;25:223–229.

    Google Scholar 

  64. Shimizu A, Fukatani M, Konoe A, Isomoto S, Centurion OA, Yano K. Electrophysiological effects of a new class III antiarrhythmic agent (E-4031) on the conduction and refractoriness of the in vivo human atrium. Cardiovasc Res 1993;27:1333–1338.

    Google Scholar 

  65. Isomoto S, Shimizu A, Konoe A, et al. Electrophysiologic effects of E-4031, a new class III antiarrhythmic agent, in patients with supraventricular tachyarrhythmias. Am J Cardiol 1993;71:1464–1467.

    Google Scholar 

  66. Fujiki A, Tani M, Mizumaki K, Shimono M, Inoue H. Electrophysiologic effects of intravenous E-4031, a novel class III antiarrhythmic agent, in patients with supraventricular tachyarrhythmias. J Cardiovasc Pharmacol 1994;23:374–378.

    Google Scholar 

  67. Wettwer E, Grundke M, Ravens U. Differential effects of the new class III antiarrhythmic agents almokalant, E-4031, and d-sotalol, and of quinidine, on delayed rectifier currents in guinea pig ventricular myocytes. Cardiovasc Res 1992;26:1145–1152.

    Google Scholar 

  68. Carmeliet E. Use-dependent block and use-dependent unblock of the delayed rectifier K+ current by almokalant in rabbit ventricular myocytes. Circ Res 1993;73:857–868.

    Google Scholar 

  69. Duker G, Almgren O, Carlsson L. Electrophysiologic and hemodynamic effects of H 234/09 (almokalant), quinidine, and (+)-sotalol in the anesthetized dog. J Cardiovasc Pharmacol 1992;20:458–465.

    Google Scholar 

  70. Wiesfeld ACP, Crijins JGM, Tobe TJM, et al. Electropharmacologic effects and pharmacokinetics of almokalant, a new class III antiarrhythmic, in patients with healed or healing myocardial infarcts and complex ventricular arrhythmias. Am J Cardiol 1992;70:990–996.

    Google Scholar 

  71. Sawanobori T, Adaniya H, Namiki T, Hiraoka M. Rate-dependent effects of sematilide on action potential duration in isolated guinea pig ventricular myocytes. J Pharmacol Exp Ther 1994;271:302–310.

    Google Scholar 

  72. Argentieri TM, Carroll MS, Sullivan ME. Cellular electrophysiological effects of the class III antiarrhythmic agents sematilide and clofilium on rabbit atrial tissues. J Cardiovasc Pharmacol 1991;18:167–174.

    Google Scholar 

  73. Chi LG, Mu DX Driscoll EM, Lucchesi BR. Antiarrhythmic and electrophysiologic actions of CK-3579 and sematilide in a conscious canine model of sudden coronary death. J Cardiovasc Pharmacol 1990;16:312–324.

    Google Scholar 

  74. Sager PT, Nademanee K, Antimisiaris M. Antiarrhythmic effects of selective prolongation of refractoriness. Electrophysiologic actions of sematilide HCL in humans. Circulation 1993;88:1072–1088.

    Google Scholar 

  75. Wong W, Pavlou HN, Birgersdotter UM, Hilleman DE, Mohiuddin SM, Roden DM Pharmacology of the class III antiarrhythmic agent sematilide in patients with arrhythmias. Am J Cardiol 1992;69:206–212.

    Google Scholar 

  76. Zhang Z, Follmer CH, Sarma JSM, Chen F, Singh BN. Effect of ambasilide, a new class III agent, on plateau currents in isolated guinea pig ventricular myocytes: Block of delayed outward potassium current. J Pharmacol Exp Ther 1992;263:40–48.

    Google Scholar 

  77. Takanaka C, Sarma JSM, Singh BN. Electrophysiologic effects of ambasilide (LU 47110), a novel class III antiarrhythmic agent, on the properties of isolated rabbit and canine cardiac muscle. J Cardiovasc Pharmacol 1992;19:290–298.

    Google Scholar 

  78. Wang J, Feng J, Nattel S. Class III antiarrhythmic drug action in experimental atrial fibrillation. Circulation 1994;90:2032–2040.

    Google Scholar 

  79. Tatla DS, David BC, Malloy KJ, Moorehead TJ. In vitro electrophysiology of NE-10064, a novel and highly selective class III antiarrhythmic agent (abstr). FASEB J 1993;7:A107.

    Google Scholar 

  80. McIntosh MA, Tanira M, Pacini D, Kane KA. Comparison of the cardiac electrophysiologic effects of NE-10064 with sotalol and E-4031 and their modification by simulated ischaemia. J Cardiovasc Pharmacol 1994;23:653–657.

    Google Scholar 

  81. Busch AE, Malloy K, Groh WJ, Varnum MD, Adelman JP, Maylie J. The novel class III antiarrhythmic NE-10064 and NE-10133 inhibit IsK channels expressed in Xenopus oocytes and IKs in guinea pig cardiac myocytes. Biochem Biophys Res Commun 1994;202:265–270.

    Google Scholar 

  82. Folander K, Smith JS, Antanavage J, Bennett C, Stein RB, Swanson R. Cloning and expression of the delayed-rectifier IsK channel from neonatal rat heart and diethylstilbestrol-primed rat uterus. Proc Natl Acad Sci USA 1990;87:2975–2979.

    Google Scholar 

  83. Busch AE, Herzer T, Takumi T, Krippeit-Drews P, Waldegger S, Lang F. Blockade of human IsK channels expressed in Xenopus oocytes by the novel class III antiarrhythmic NE-10064. Eur J Pharmacol 1994;264:33–37.

    Google Scholar 

  84. Groh WJ, Gibson KJ, Maylie JG. Azimilide (NE-10064) prolongs action potential duration in a reverse rate-dependent manner in guinea pig ventricular muscle (abstr). PACE 1995;18(II):853.

    Google Scholar 

  85. Black SC, Butterfield JL, Lucchesi BR. Protection against programmed electrical stimulation-induced ventricular tachycardia and sudden cardiac death by NE-10064, a class III antiarrhythmic drug. J Cardiovasc Pharmacol 1993;22:810–818.

    Google Scholar 

  86. Dukes ID, Cleemann L, Morad M. Tedisamil blocks the transient and delayed rectifier K+ currents in mammalian cardiac and glial cells. J Pharm Exp Ther 1990;254:560–569.

    Google Scholar 

  87. Tsuchihashi K, Curtis MJ. Influence of tedisamil on the initiation and maintenance of ventricular fibrillation: Chemical defibrillation by Ito blockade? J Cardiovasc Pharmacol 1991;18:445–456.

    Google Scholar 

  88. Bril A, Landais L, Gout B. Actions and interactions of E-4031 and tedisamil on reperfusion-induced arrhythmias and QT interval in rat in vivo. Cardiovasc Drugs Ther 1993;7:233–240.

    Google Scholar 

  89. Wallace AA, Stupienski RF, Baskin EP. Cardiac electrophysiologic and antiarrhythmic actions of tedisamil. J Pharmacol Exp Ther 1995;273:168–175.

    Google Scholar 

  90. Bargheer K, Bode F, Klein HU, Trappe HJ, Franz MR, Lichtlen PR. Prolongation of monophasic action potential duration and the refractory period in the human heart by tedisamil, a new potassium-blocking agent. Eur Heart J 1994;15:1409–1414.

    Google Scholar 

  91. Escande D, Mestre M, Cavero I, Brugaada J, Kirchof C. RP 58866 and its active enantiomer RP 62719 (terikalant): Blockers of the inward rectifier K+ current acting as pure class III antiarrhythmic agents. J Cardiovasc Pharmacol 1992;20(Suppl 2):S106–S113.

    Google Scholar 

  92. Nair LA, Grant AO. RP 58866 exhibits fast blocking kinetics of the inward-rectifying potassium channel (abstr). PACE 1995;18(II):234.

    Google Scholar 

  93. Rees SA, Curtis MJ. Specific IK1 blockade: A new antiarrhythmic mechanism? Circulation 1993;87:1979–1989.

    Google Scholar 

  94. Lee KS, Tsai TD, Lee EW. Membrane activity of class III antiarrhythmic compounds; a comparison between ibutilide, d-sotalol, E-4031, sematilide and dofetilide. Eur J Pharmacol 1993;234:43–53.

    Google Scholar 

  95. Lee KS. Ibutilide, a new compound with potent class III antiarrhythmic activity, activates a slow inward Na+ current in guinea pig ventricular cells. J Pharmacol Exp Ther 1992;262:99–108.

    Google Scholar 

  96. Yang T, Snyders DJ, Roden DM. Ibutilide, a methanesulfonanilide antiarrhythmic, is a potent blocker of the rapidly activating delayed rectifier K+ current (IKr) in AT-1 cells. Circulation 1995;91:1799–1806.

    Google Scholar 

  97. Buchanan LV, Kabell G, Turcotte UM, Brunden MN, Gibson JK. Effects of ibutilide on spontaneous and induced ventricular arrhythmias in 24-hour canine myocardial infarction: A comparative study with sotalol and encainide. J Cardioasc Pharmacol 1992;19:256–263.

    Google Scholar 

  98. Wesley RC, Farkhani F, Morgan D, Zimmerman D. Ibutilide: Enhanced defibrillation via plateau sodium current activation. Am J Physiol 1993;264:H1269–H1274.

    Google Scholar 

  99. Buchanan LV, LeMay RJ, Gibson JK. Comparison of the class III agents d,l sotalol HCL and ibutilide fumarate for atrial reverse use dependence and antiarrhythmic effect (abstr). PACE 1996;19:687.

    Google Scholar 

  100. Buchanan LV, Turcotte UM, Kabell GG, Gibson JK. Antiarrhythmic and electrophysiologic effects of ibutilide in a chronic canine model of atrial flutter. J Cardiovasc Pharmacol 1993;22:10–14.

    Google Scholar 

  101. Nabih MA, Prcevski P, Fromm BS, et al. Effect of ibutilide, a new class III agent, on sustained atrial fibrillation in a canine model of acute ischemia and myocardial dysfunction induced by microembolization. PACE 1993;16:1975–1983.

    Google Scholar 

  102. Wood M, Stambler B, Gilligan D, et al. Suppression of inducible ventricular tachycardia by intravenous ibutilide in patients with coronary artery disease (abstr). PACE 1996;19:618.

    Google Scholar 

  103. Stambler BS, Portnow AS, Wood MA, et al. Proven efficacy of repeated dose intravenous ibutilide, a class III antiarrhythmic drug, for rapid termination of chronic atrial flutter or fibrillation: Results of a multicenter placebo-controlled study (abstr). J Am Coll Cardiol 1995;25:230A.

    Google Scholar 

  104. Volgman AS, Stambler BS, Kappagoda C, et al. Comparison of intravenous ibutilide versus procainamide for the rapid termination of atrial fibrillation or flutter (abstr). PACE 1996;19:608.

    Google Scholar 

  105. Data on file, TR 1424-95-002. Kalamazoo, MI: The Upjohn Company.

  106. Selzer A, Wray HW. Quinidine syncope. Circulation 1964;30:17–26.

    Google Scholar 

  107. Hohnloser SH, Zabel M, van de Loo A, Klingenheben T, Just H. Efficacy and safety of sotalol in patients with complex ventricular arrhythmias. Int J Cardiol 1992;37:283–291.

    Google Scholar 

  108. Lazzara R. Amiodarone and torsade de pointes. Ann Intern Med 1989;111:549–550.

    Google Scholar 

  109. Mattioni TA, Zheutlin TA, Sarmiento JJ, Parker M, Lesch M, Kehoe RF. Amiodarone in patients with previous drug-mediated torsade de pointes. Ann Intern Med 1989;111:574–580.

    Google Scholar 

  110. Nguyen PT, Scheinman MM, Seger J. Polymorphous ventricular tachycardia: Clinical characterization, therapy, and the QT interval. Circulation 1986;74:340–349.

    Google Scholar 

  111. Bonatti V, Rolli A, Botti G. Recording of monophasic action potentials of the right ventricle in long QT syndromes complicated by severe ventricular arrhythmias. Eur Heart J 1983;4:168–179.

    Google Scholar 

  112. Bonatti V, Rolli A, Botti G. Monophasic action potential studies in human subjects with prolonged ventricular repolarization and long QT syndromes. Eur Heart J 1985;6(Suppl D):131–143.

    Google Scholar 

  113. January CT, Riddle JM. Early afterdepolarizations: Mechanisms of induction and block. Circ Res 1989;64:977–990.

    Google Scholar 

  114. January CT, Riddle JM, Salata JJ. A model for early afterdepolarizations: Induction with the Ca2+ channel agonist Bay K 8644. Circ Res 1988;62:563–571.

    Google Scholar 

  115. El-Sherif N, Zeiler RH, Craelius W, Gough WB, Henkin R. QTU prolongation and polymorphic ventricular tachyarrhythmias due to bradycardia-dependent early afterdepolarizations. Circ Res 1988;63:286–305.

    Google Scholar 

  116. Roden D. Early after-depolarizations and torsade de pointes: Implications for the control of cardiac arrhythmias by prolonging repolarization. Eur Heart J 1993;14(Suppl H):56–61.

    Google Scholar 

  117. Brachmann J, Scherlag BJ, Rosenshtraukh LV, Lazzara R. Bradycardia-dependent triggered activity: Relevance to drug-induced multiform ventricular tachycardia. Circulation 1983;68:846–856.

    Google Scholar 

  118. Rubart M, Pressler ML, Pride HP, Zipex DP. Electrophysiological mechanisms in a canine model of erythromycin-associated long QT syndrome. Circulation 1993;88:832–844.

    Google Scholar 

  119. Carlsson L, Almgren O, Duker G. QTU-prolongation and torsades de pointes induced by putative class III antiarrhythmic agents in the rabbit: Etiology and interventions. J Cardiovasc Pharmacol 1990;16:276–285.

    Google Scholar 

  120. Roden DM, Hoffman BF. Action potentials prolongation and induction of abnormal automaticity by low quinidine concentrations in canine purkinje fibers. Circ Res 1985;56:857–867.

    Google Scholar 

  121. Strauss HC, Bigger JT, Hoffman BF. Electrophysiological and beta-receptor blocking effects of MJ 1999 on dog and rabbit cardiac tissue. Circ Res 1970;26:661–678.

    Google Scholar 

  122. Buchanan LV, Kabell G, Brunden MN, Gibson JK. Comparative assessment of ibutilide, d-sotalol, clofilium, E-4031, and UK-68,798 in a rabbit model of proarrhythmia. J Cardiovasc Pharmacol 1993;220:540–549.

    Google Scholar 

  123. Tande PM, Bjornstad H, Yang T, Refsum H. Rate-dependent class III antiarrhythmic action, negative chronotropy, and positive inotropy of a novel IK blocking drug UK-68,798: Potent in guinea pig but no effect in rat myocardium. J Cardiovasc Pharmacol 1990;16:401–410.

    Google Scholar 

  124. Sedgwick ML, Rasmussen HS, Cobbe SM. Effects of the class III antiarrhythmic drug dofetilide on ventricular monophasic action potential duration and QT interval dispersion in stable angina pectoris. Am J Cardiol 1992;70:1432–1437.

    Google Scholar 

  125. Carlsson L, Almgren O, Duker G. QTU-prolongation and torsades de pointes induced by putative class III antiarrhythmic agents in the rabbit: Etiology and interventions. J Cardiovasc Pharmacol 1990;16:276–285.

    Google Scholar 

  126. Carlsson L, Abrahamsson C, Andersson B, Duker G, Schiller-Linhardt G. Proarrhythmic effects of the class III agent almokalant: Importance of infusion rate, QT dispersion, and early afterdepolarizations. Cardiovasc Res 1993;27:2186–2193.

    Google Scholar 

  127. Abrahamsson C, Duker G, Lundberg C, Carlsson L. Electrophysiological and inotropic effects of H 234/09 almokalant in vitro: A comparison with two other novel IK blocking drugs, UK-68,798 (dofetilide) and E-4031. Cardiovasc Res 1993;27:861–867.

    Google Scholar 

  128. Wiesfeld ACP, Crijns HJGM, Bergstrand RH, Almgren O, Hillege HL, Lie KI. Torsades de pointes with almokalant, a new class III antiarrhythmic drug. Am Heart J 1993;126:1008–1011.

    Google Scholar 

  129. Ellenbogen K, Vanderlugt J, Robbins I, Kowey P, for the Ibutilide Investigators. Overall safety experience with intravenous ibutilide (abstr). PACE 1996;19:608.

    Google Scholar 

  130. Campbell RM, Woosley RL, Iansmith DHS, Roden DM. Lack of triggered automaticity despite repolarization abnormalities due to bepridil and lidoflazine. PACE 1990;13:30–6.

    Google Scholar 

  131. Li ZY, Maldonado C, Zee-Cheng C, Hiromasa S, Kupersmith J. Purkinje fibre-papillary muscle interaction in the genesis of triggered activity in a guinea pig model. Cardiovasc Res 1992;26:543–548.

    Google Scholar 

  132. Antzelevitch C, Sicouri S. Clinical relevance of cardiac arrhythmias generated by afterdepolarizations. The role of M cells in the generation of U waves, triggered activity and torsade de pointes. J Am Coll Cardiol 1994;23:259–277.

    Google Scholar 

  133. Sicouri S, Antzelevitch C. Electrophysiologic characteristics of M cells in the canine left ventricular free wall. J Cardiovasc Electrophysiol 1995;6:591–603.

    Google Scholar 

  134. Sicouri S, Antzelevitch C. Afterdepolarizations and triggered activity develop in a select population of cells (M cells) in canine ventricular myocardium. The effects of acetylstrophanthidin and Bay K 8644. PACE 1991;14:1714–1720.

    Google Scholar 

  135. Sicouri S, Antzelevitch C. Drug-induced afterdepolarizations and triggered activity occur in a discrete subpopulation of ventricular muscle cell (M cells) in the canine heart. Quinidine and digitalis. J Cardiovasc Electrophysiol 1993;4:48–58.

    Google Scholar 

  136. Balser JR, Bennett PB, Hondeghem LM, Roden DM. Suppression of time-dependent outward current in guinea pig ventricular myocytes. Circ Res 1991;69:519–529.

    Google Scholar 

  137. Sager PT, Uppal P, Follmer C, Antimisiaris M, Pruitt C, Singh BN. Frequency-dependent electrophysiologic effects of amiodarone in humans. Circulation 1993;88:1063–1071.

    Google Scholar 

  138. Krafte DS, Dugrenier N, Dillon K, Volberg WA. Electrophysiological properties of a cloned, human potassium channel expressed in xenopus oocytes (abstr). Biophys J 1992;61:A378.

    Google Scholar 

  139. Beuckelmann DJ, Nabauer M, Erdmann E. Alteration of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ Res 1993;73:379–385.

    Google Scholar 

  140. Veldkamp MW, van Ginneken ACG, Opthof T, Bouman LN. Delayed rectifier channels in human ventricular myocytes. Circulation 1995;92:3497–3504.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nair, L.A., Grant, A.O. Emerging Class III Antiarrhythmic Agents:Mechanism of Action and Proarrhythmic Potential. Cardiovasc Drugs Ther 11, 149–167 (1997). https://doi.org/10.1023/A:1007784814823

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007784814823

Navigation