Skip to main content
Log in

Angiotensin II Receptor Antagonist EXP 3174 Reduces Infarct Size Comparable with Enalaprilat and Augments Preconditioning in the Pig Heart

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

There is no agreement on the effect of angiotensin II receptor blockade in the setting of ischemic reperfusion. Our aim was to assess the acute effects of angiotensin-converting enzyme (ACE) inhibition and angiotensin II AT1-subtype receptor blockade in pig heart. Five groups of open-chest pigs received 1 hour of left anterior descending (LAD) coronary artery occlusion and 2 hours of reperfusion. Left ventricular pressure was monitored by an intraventricular catheter, and regional segment shortening (%SS) in the LAD-supplied territory was measured by ultrasonic crystals implanted in the subendocardium. Group 1 (n = 6) served as the control; groups 2 (n = 6) and 3 (n = 6) received the angiotensin II receptor blocker, EXP 3174 (C22H21Cl1 N6O2), and the ACE inhibitor, enalaprilat, respectively, prior to LAD occlusion; group 4 (n = 6) was preconditioned with two cycles of 10 minutes of coronary occlusion and 30 minutes of reperfusion; and group 5 (n = 6) underwent preconditioning with additional administration of EXP 3174 prior to the 60-minute occlusion period. Infarct sizes were measured by p-nitrobluetetrazolium staining and were expressed in percent of the ischemic area of risk. The angiotensin II receptor blocker EXP 3174 and enalaprilat reduced infarct sizes significantly (35.3 ± 17.1% and 40.1 ± 15.1%, respectively) compared with controls (71.2± 12.8%, P < 0.05), and EXP 3174 augmented the infarct size–limiting effects of preconditioning by ischemia (10.5 ± 6% vs. 28.6 ± 5.3%, P < 0.05). Regional contractile dysfunction during reperfusion demonstrated no changes after angiotensin II receptor blockade. Angiotensin II receptor blockade reduced infarct size comparable with that obtained with angiotensin converting-enzyme inhibition. The infarct size–limiting effects of ischemic preconditioning were augmented by administration of the angiotensin II receptor antagonist EXP3174. These data support the concept that blockade or inhibition of angiotensin II before coronary occlusion is protective in a swine model of acute ischemia and reperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Randomized trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. Lancet (Supp. 1988; II):349–360.

    Google Scholar 

  2. Sheehan FH, Braunwald E, Canner P, et al. The effect of intravenous thrombolytic therapy on left ventricular function: A report on tissue-type plasminogen activator and streptokinase from the Thrombolysis in Myocardial Infarction (TIMI Phase I) Trial. Circulation 1987;75:817–829.

    PubMed  CAS  Google Scholar 

  3. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation 1986;74:1124–1136.

    PubMed  CAS  Google Scholar 

  4. Schott RJ, Rohmann S, Braun ER, Schaper W. Ischemic preconditioning reduces infarct size in swine myocardium. Circ Res 1990;66:1133–1142.

    PubMed  CAS  Google Scholar 

  5. Kloner RA, Przyklenk K, Shook T. The role of preconditioning ischemia in the reduction of myocardial infarct size. Editor Cardiol 1995;1:67–71.

    Google Scholar 

  6. Cohen MV, Liu GS, Downey JM. Preconditioning causes improved wall motion as well as smaller infarcts after transient coronary occlusion in rabbits. Circulation 1990;66:133–142.

    Google Scholar 

  7. Janier MF, Vanoverschelde JL, Bergmann SR. Ischemic preconditioning stimulates anaerobic glycolysis in the isolated rabbit heart. Am J Physiol 1994;267:H1353–H1360.

    PubMed  CAS  Google Scholar 

  8. Kaplan LJ, Bellows CF, Blum H. Mitchell M, Whitman GJ. Ischemic preconditioning preserves end-ischemic ATP, enhancing functional recovery and coronary flow during reperfusion. J Surg Res 1994;57:179–184.

    Article  PubMed  CAS  Google Scholar 

  9. Shiki K, Hearse DJ. Preconditioning of ischemic myocardium: Reperfusion-induced arrythmias. Am J Physiol 1987;253:H1470–H1476.

    PubMed  CAS  Google Scholar 

  10. Lawson CS, Hearse DJ. Ischemic preconditioning against arrhythmias: An anti-arrhythmic or an anti-ischemic phenomenon? Ann N Y Acad Sci 1994;723:138–157.

    PubMed  CAS  Google Scholar 

  11. Parratt J, Vegh A. Pronounced antiarrhythmic effects of ischemic preconditioning. Cardioscience 1994;5:9–18.

    PubMed  CAS  Google Scholar 

  12. Linder C, Heusch G. ACE inhibitors for the treatment of myocardial ischemia? Cardiovasc Drugs Ther 1990;4:1375–1384.

    Article  PubMed  CAS  Google Scholar 

  13. Schieffer B, Wirger A, Meybrunn M, Seitz S, Holtz J, Riede UN, Drexler H. Comparative effects of chronic angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade on cardiac remodeling after myocardial infarction in the rat. Circulation 1994;89:2273–2282.

    PubMed  CAS  Google Scholar 

  14. Hayashida W, van Eyll C, Rousseau MF, Poulleur H. Regional remodeling and nonuniform changes in diastolic function in patients with left ventricular dysfunction: Modification by long-term enalapril treatment. J Am Coll Cardiol 1993;22:1403–1410.

    Article  PubMed  CAS  Google Scholar 

  15. Konstam MA, Rousseau MF, Kronenberg MW, et al. Effects of the angiotensin converting enzyme inhibitor enalapril on the long-term progression of left ventricular dysfunction in patients with heart failure. Circulation 1992;86:431–438.

    PubMed  CAS  Google Scholar 

  16. The CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med 1987;316:1429–1435.

    Article  Google Scholar 

  17. Borghi C, Ambrosioni E, Magnani B, on behalf of SMILE Investigators. Effects of short-term ACE-inhibition on onset and progression of congestive heart failure in patients with acute anterior myocardial infarction (abstr). Eur Heart J 1995;16:35.

    Google Scholar 

  18. Nikoloff F, Missov E, Kitchoukoff N, Galaboff Z, Beck L, Davy JM, Djourdeff A. Captopril in acute anterior myocardial infarction not eligible for fibrinolytic and β-blocker therapy (abstr). Eur Heart J 1995;16:443.

    Google Scholar 

  19. Timmermans PBMWM, Wong PC, Chiu AT, et al., Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 1993;45:205–251.

    PubMed  CAS  Google Scholar 

  20. Kang PM, Landau AJ, Eberhardt RT, Frishman WH. Angiotensin II receptor antagonists: A new approach to blockade the renin-angiotensin system. Am Heart J 1994;127:1388–1401.

    Article  PubMed  CAS  Google Scholar 

  21. Hartman JC, Hullinger TG, Wall TM, Shebuski RJ. Reduction of myocardial infarct size by ramiprilat is independent of angiotensin II synthesis inhibition. Eur J Pharmacol 1993;234:229–236.

    Article  PubMed  CAS  Google Scholar 

  22. Richard V, Ghaleh B, Berdeaux A, Giudicelli JF. Comparison of the effects of EXP 3174, an angiotensin II antagonist and enalaprilat on myocardial infarct size in anaesthetized dogs. Br J Pharmacol 1993;110:969–974.

    PubMed  CAS  Google Scholar 

  23. Lindpainter K, Jin M, Wilhelm MJ, Suzuki F, Linz W, Schoelkens BA, Ganten D. Intracardiac generation of angiotensin and its physiologic role. Circulation 1988;77:18–23.

    Google Scholar 

  24. Klein HH, Puschmann S, Schaper J, Schaper W. The mechanism of tetrazolium reaction in identifying experimental myocardial infarction. Virchows Arch 1981;393:287–297.

    Article  CAS  Google Scholar 

  25. Liu Y, Tsuchida A, Cohen MV, Downey JM. Pretreatment with angiotensin II activates protein kinase C and limits myocardial infarction in isolated rabbit hearts. J Mol Cell Cardiol 1995;27:883–892.

    Article  PubMed  CAS  Google Scholar 

  26. Ertl G, Kloner RA, Alexander RW, Braunwald E. Limitation of experimental infarct size by an angiotensin-converting enzyme inhibitor. Circulation 1982;65:40–48.

    PubMed  CAS  Google Scholar 

  27. Hock CE, Ribeiro LGT, Lefer AM. Preservation of ischemic myocardium by a new converting enzyme inhibitor, enalapril acid, in acute myocardial infarction. Am Heart J 1985;109:222–228.

    Article  PubMed  CAS  Google Scholar 

  28. Lefer AM, Peck RC. Cardioprotective effects of enalapril in acute myocardial ischemia. Pharmacology 1984;29:61–69.

    Article  PubMed  CAS  Google Scholar 

  29. Przyklenk K, Kloner RA., “Cardioprotection” by ACE-inhibitors in acute myocardial ischemia and infarction? Basic Res Cardiol 1993;88:139–154.

    PubMed  CAS  Google Scholar 

  30. Dzau VJ, Safar MI. Large conduit arteries in hypertension: Role of the vascular renin angiotensin system. Circulation 1988;77:947–954.

    PubMed  CAS  Google Scholar 

  31. Westlin W, Mullane K. Does captopril attenuate reperfusion-induced myocardial dysfunction by scavenging free radicals? Circulation 1988;77(Suppl. I):130–139.

    Google Scholar 

  32. Przyklenk K, Kloner RA. Angiotensin converting enzyme inhibitors improve contractile function of stunned myocardium by different mechanisms of action. Am Heart J 1991;121:1319–1330.

    Article  PubMed  CAS  Google Scholar 

  33. Linz W, Martorana PA, Schoelkens BA. Local inhibition of bradykinin degradation in ischemic hearts. J Cardiovasc Pharmacol 1990;15(Suppl. 6):99–109.

    Google Scholar 

  34. Bertolino F, Valentin JP, Maffre M, Jover B, Bessac AM, John GW. Prevention of thromboxane A2 receptor-mediated pulmonary hypertension by a nonpeptide angiotensin II type 1 receptor antagonist. J Pharmacol Exp Ther 1994;268:747–752.

    PubMed  CAS  Google Scholar 

  35. Wilcox CS, Welch WJ. Thromboxane mediation of the pressure response to infused angiotensin II. Am J Hypertens 1990;3:242–249.

    PubMed  CAS  Google Scholar 

  36. Hirsch AT, Talsness CE, Schunkert H, Paul M, Dzau VJ. Tissue-specific activation of cardiac angiotensin converting enzyme in experimental heart failure. Circ Res 1991;69:475–482.

    PubMed  CAS  Google Scholar 

  37. Ercan ZS, Sindel S, Turker R. Possible thromboxane A2 mediated effect of angiotensin II in the rabbit isolated kidney. Arch Int Physiol Biochem Biophys 1991;99:397–400.

    CAS  Google Scholar 

  38. Tsao PS, Lefer AM. Cardioprotective actions of the specific thromboxane receptor antagonist (+) — S145Na following coronary occlusion and reperfusion in the rat. Res Commun Chem Pathol Pharmacol 1990;70:205–211.

    PubMed  CAS  Google Scholar 

  39. Schömig A, Dart A, Dietz R, Mayer E, Kübler W. Release of endogenous catecholamines in the ischemic myocardium of the rat. Part A: Locally mediated release. Circ Res 1984;55:689–701.

    PubMed  Google Scholar 

  40. Humphrey SM, Thompson RW, Gavin JB. The influence of the no-flow phenomenon on reperfusion and reoxygenation damage and enzyme release from ischemic isolated rat heart. J Mol Cell Cardiol 1984;16:915–930.

    PubMed  CAS  Google Scholar 

  41. Sudhir K, MacGregor JS, Gupta M, Barbant SD, Redberg R, Yock PG, Chatterjee K. Effect of selective angiotensin II receptor antagonism and angiotensin converting enzyme inhibition on coronary vasculature in vivo. Circulation 1993;87:931–938.

    PubMed  CAS  Google Scholar 

  42. Piana RN, Wang SY, Friedman M, Sellke FW. Angiotensin-converting enzyme inhibition preserves endothelium-dependent coronary microvascular responses during short-term ischemia-reperfusion. Circulation 1996;93:544–551.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarz, E.R., Montino, H., Fleischhauer, J. et al. Angiotensin II Receptor Antagonist EXP 3174 Reduces Infarct Size Comparable with Enalaprilat and Augments Preconditioning in the Pig Heart. Cardiovasc Drugs Ther 11, 687–695 (1997). https://doi.org/10.1023/A:1007743125918

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007743125918

Navigation