Skip to main content
Log in

Brain Microvascular P-Glycoprotein and a Revised Model of Multidrug Resistance in Brain

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. P-Glycoprotein is a 170-kDa transmembrane glycoprotein active efflux system that confers multidrug resistance in tumors, as well as normal tissues including brain.

2. The classical model of multidrug resistance in brain places the expression of P-glycoprotein at the luminal membrane of the brain microvascular endothelial cell. However, recent studies have been performed with human brain microvessels and double-labeling confocal microscopy using (a) the MRK16 antibody to human P-glycoprotein, (b) an antiserum to glial fibrillary acidic protein (GFAP), an astrocyte foot process marker, or (c) an antiserum to the GLUT1 glucose transporter, a brain endothelial plasma membrane marker. These results provide evidence for a revised model of P-glycoprotein function at the brain microvasculature. In human brain capillaries, there is colocalization of immunoreactive P-glycoprotein with astrocytic GFAP but not with endothelial GLUT1 glucose transporter.

3. In the revised model of multidrug resistance in brain, P-glycoprotein is hypothesized to function at the plasma membrane of astrocyte foot processes. These astrocyte foot processes invest the brain microvascular endothelium but are located behind the blood–brain barrier in vivo, which is formed by the brain capillary endothelial plasma membrane.

4. In the classical model, an inhibition of endothelial P-glycoprotein would result in both an increase in the blood–brain barrier permeability to a given drug substrate of P-glycoprotein and an increase in the brain volume of distribution (V D) of the drug. However, in the revised model of P-glycoprotein function in brain, which positions this protein transporter at the astrocyte foot process, an inhibition of P-glycoprotein would result in no increase in blood–brain barrier permeability, per se, but only an increase in the V D in brain of P-glycoprotein substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Barrand, M. A., Robertson, K. J., and von Weikersthal, S. F. (1995). Comparisons of P-glycoprotein expression in isolated rat brain microvessels and in primary cultures of endothelial cells derived from microvasculature of rat brain, epididymal fat pad and from aorta. FEBS 374:179-183.

    Google Scholar 

  • Beaulieu, E., Demeule, M., Pouliot, J.-F., Averill-Bates, D. A., Murphy, G. F., and Béliveau, R. (1995). P-Glycoprotein of blood-brain barrier: Cross-reactivity of MAb C219 with a 190 kDa protein in bovine and rat isolated brain capillaries. Biochim. Biophys. Acta 1233:27-32.

    Google Scholar 

  • Becker, I., Becker, K.-F., Meyermann, R., and Hollt, V. (1991). The multidrug-resistance gene MDR-1 is expressed in human glial tumors. Acta Neuropathol. 82:516-519.

    Google Scholar 

  • Cefalu, W. T., and Pardridge, W. M. (1985). Restrictive transport of a lipid-soluble peptide (cyclosporin) through the blood-brain barrier. J. Neurochem. 45:1954-1956.

    Google Scholar 

  • Chen, A.-Y., Yu, C., Bodley, A., Peng, F., and Liu, L. F. (1993). A new mammalian DNA topoisomerase I poison Hoechst 33342: Cytotoxicity and drug resistance in human cell cultures. Cancer Res. 53:1332-1337.

    Google Scholar 

  • Colombo, T., Zucchetti, M., and D'Incalci, M. (1994). Cyclosporin A markedly changes the distribution of doxorubicin in mice and rats. J. Pharmacol. Exp. Ther. 269:22-27.

    Google Scholar 

  • Cordon-Cardo, C., O'Brien, J. P., Casals, D., Rittman-Grauer, L., Biedler, J. L., Melamed, M. R., and Bertino, J. R. (1989). Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc. Natl. Acad. Sci. USA 86:695-698.

    Google Scholar 

  • Cordon-Cardo, C., O'Brien, J. P., Boccia, J., Casals, D., Bertino, J. R., and Melamed, M. R. (1990). Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor stissues. J. Histochem. Cytochem. 38:1277-1287.

    Google Scholar 

  • DeLange, E. C. M., DeBoer, A. G., and Breimer, D. D. (1995). Pharmacokinetics of the P-glycoprotein substrate rhodamine-123 in brain, determined by microdialysis and homogenates in mdr1a (−/−) and (+/+) mice. In Abstracts of the 1995 Cerebral Vascular Biology Conference, Paris, France, p. 60.

  • Fojo, A. T., Ueda, K., Slamon, D. J., Poplack, D. G., Gottesman, M. M., and Pastan, I. (1987). Expression of a multidrug-resistance gene in human tumors and tissues. Proc. Natl. Acad. Sci. USA 84:265-269.

    Google Scholar 

  • Fontaine, M., Elmquist, W. F., and Miller, D. W. (1996). Use of rhodamine 123 to examine the functional activity of P-glycoprotein in primary cultured brain microvessel endothelial cell monolayers. Life Sci. 59:1521-1531.

    Google Scholar 

  • Georges, E., Tsuruo, T., and Ling, V. (1993). Topology of P-glycoprotein as determined by epitope mapping of MRK-16 monoclonal antibody. J. Biol. Chem. 268:1792-1798.

    Google Scholar 

  • Gottesman, M. M., and Pastan, I. (1993). Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu. Rev. Biochem. 62:385-427.

    Google Scholar 

  • Hegmann, E. J., Bauer, H. C., and Kerbel, R. S. (1992). Expression and functional activity of P-glycoprotein in cultured cerebral capillary endothelial cells. Cancer Res. 52:6969-6975.

    Google Scholar 

  • Huwyler, J., Drewe, J., Klusemann, C., and Fricker, G. (1996). Evidence for P-glycoprotein-modulated penetration of morphine-6-glucuronide into brain capillary endothelium. Br. J.Pharmacol. 118:1879-1885.

    Google Scholar 

  • Jetté, L., and Béliveau, R. (1993). P-Glycoprotein is strongly expressed in brain capillaries. In Drewes, L. R., and Betz, A. L. (eds.), Frontiers in Cerebral Vascular Biology, Plenum Press, New York, pp. 121-125.

    Google Scholar 

  • Jetté, L., Têtu, B., and Béliveau, R. (1993). High levels of P-glycoprotein detected in isolated brain capillaries. Biochim. Biophys. Acta 1150:147-154.

    Google Scholar 

  • Jetté, L., Murphy, G. F., Leclerc, J.-M., and Béliveau, R. (1995a). Interaction of drugs with P-glycoprotein in brain capillaries. Biochem. Pharmacol. 50:1701-1709.

    Google Scholar 

  • Jetté, L., Pouliot, J.-F., Murphy, G. F., and Béliveau, R. (1995b). Isoform I (mdr3) is the major form of P-glycoprotein expressed in mouse brain capillaries. Biochem. J. 305:761-766.

    Google Scholar 

  • Juliano, R. L., and Ling, V. (1979). A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta 455:152-162.

    Google Scholar 

  • Kartner, N., Evernden-Porelle, D., Bradley, G., and Ling, V. (1985). Detection of P-glycoprotein in multidrug-resistant cell lines by monoclonal antibodies. Nature 316:820-823.

    Google Scholar 

  • Kessel, D., Bollerill, V., and Wodinsky, I. (1968). Uptake and retention of daunomycin by mouse leukemic cells as factors in drug response. Cancer Res. 28:938-941.

    Google Scholar 

  • Lum, B. L., Fisher, G. A., Brophy, N. A., Yahanda, A. M., Adler, K. M., Kaubisch, S., Halsey, J., and Sikic, B. I. (1993). Clinical trials of modulation of multidrug resistance. Cancer 72:3502-3514.

    Google Scholar 

  • Mayer, U., Wagenaar, E., Beijnen, J. H., Smit, J. W., Meijer, D. K. F., van Asperen, J., Borst, P., and Schinkel, A. H. (1996). Substantial excretion of digoxin via the intestinal mucosa and the prevention of long-term digoxin accumulation in the brain by the mdr1a P-glycoprotein. Br. J. Pharmacol. 19:1038-1044.

    Google Scholar 

  • Morgan, M. E., Singhal, D., and Anderson, B. D. (1996). Quantitative assessment of blood-brain barrier damage during microdialysis. J. Pharmacol. Exp. Ther. 277:1167-1176.

    Google Scholar 

  • Moro, V., Kacem, K., Springhetti, V., Seylaz, and Lasbennes, F. (1995). Microvessels isolated from brain: Localization of muscarinic sites by radioligand binding and immunofluorescent techniques. J. Cereb. Blood Flow Metab. 15:1082-1092.

    Google Scholar 

  • Pardridge, W. M. (1991). Peptide Drug Delivery to the Brain, Raven Press, New York.

    Google Scholar 

  • Pardridge, W. M., Boado, R. J., and Farrell, C. R. (1990). Brain-type glucose transporter (GLUT1) is selectively localized to the blood-brain barrier. Studies with quantitative western blotting and in situ hybridization. J. Biol. Chem. 265:18035-18040.

    Google Scholar 

  • Pardridge, W. M., Buciak, J. L., and Friden, P. M. (1991). Selective transport of anti-transferrin receptor antibody through the blood-brain barrier in vivo. J. Pharmacol. Exp. Ther. 259:66-70.

    Google Scholar 

  • Pardridge, W. M., Kang, Y.-S., Buciak, J. L., and Yang, J. (1995). Human insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transcytosis through the blood-brain barrier in vivo in the primate. Pharm. Res. 12:807-816.

    Google Scholar 

  • Pardridge, W. M., Golden, P. L., Bickel, U., and Kang, Y.-S. (1997). Brain microvascular and astrocyte localization of P-glycoprotein. J. Neurochem. 68:1278-1285.

    Google Scholar 

  • Qin, Y., and Sato, T. N. (1995). Mouse multidrug resistance 1a/3 gene is the earliest known endothelial cell differentiation marker during blood-brain barrier development. Dev. Dynam. 202:172-180.

    Google Scholar 

  • Riordan, J. R., and Ling, V. (1979). Purification of P-glycoprotein from plasma membrane vesicles of Chinese hamster ovary cell mutants with reduced colchicine permeability. J. Biol. Chem. 254:12701-12705.

    Google Scholar 

  • Sakata, A., Tamai, I., Kawazu, K., Deguchi, Y., Ohnishi, T., Saheki A., and Tsuji, A. (1994). In vivo evidence for ATP-dependent and P-glycoprotein-mediated transport of cyclosporin A at the blood-brain barrier. Biochem. Pharmacol. 48:1989-1992.

    Google Scholar 

  • Samoto, K., Ikezaki, K., Yokoyama, N., and Fukui, M. (1994). P-glycoprotein expression in brain capillary endothelial cells after focal ischaemia in the rat. Neurol. Res. 16:217-223.

    Google Scholar 

  • Schinkel, A. H., Smit, J. J. M., Van Tellingen, O., Beijnen, J. H., Wagenaar, E., Van Deemter, L., Mol, C. A. A. M., Van der Valk, M. A., Robanus-Maandag, E. C., Te Riele, H. P. J., Berns, A. J. M., and Borst, P. (1994). Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77:491-502.

    Google Scholar 

  • Schinkel, A. H., Wagenaar, E., Mol, C. A. A. M., and van Deemter, L. (1996). P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J. Clin. Invest. 97:2517-2524.

    Google Scholar 

  • Shalinsky, D. R., Andreeff, M., and Howell, S. B. (1990). Modulation of drug sensitivity by dipyridamole in multidrug resistant tumor cells in vitro. Cancer Res. 50:7537-7543.

    Google Scholar 

  • Stewart, P. A. (1994). Glial-vascular relations. In Welch, K. M. A., Caplan, L. R., and Reis, D. J. (eds.), Primer on Cerebrovascular Diseases, Academic Press, New York, pp. 17-20.

    Google Scholar 

  • Stewart, P. A., Béliveau, R., and Rogers, K. A. (1996). Cellular localization of P-glycoprotein in brain versus gonadal capillaries. J. Histochem. Cytochem. 44:679-685.

    Google Scholar 

  • Sugawara, I., Hamada, H., Tsuruo, T., and Mori, S. (1990). Specialized localization of P-glycoprotein recognized by MRK 16 monoclonal antibody in endothelial cells of the brain and spinal cord. Jpn. J. Cancer Res. 81:727-730.

    Google Scholar 

  • Tatsuta, T., Naito, M., Oh-hara, T., Sugawara, I., and Tsuruo, T. (1992). Functional involvement of Pglycoprotein in blood-brain barrier. J. Biol. Chem. 267:20383-20391.

    Google Scholar 

  • Thiebaut, F., Tsuruo, T., Hamada, H., Gottesman, M. M., Pastan, I., and Willingham, M. C. (1989). Immunohistochemical localization in normal tissues of different epitopes in the multidrug transport protein P170: Evidence for localization on brain capillaries and crossreactivity of one antibody with a muscle protein. J. Histochem. Cytochem. 37:159-164.

    Google Scholar 

  • Tishler, D. M., Weinberg, K. I., Hinton, D. R., Barbaro, N., Annett, G. M., and Raffel, C. (1995). MDR1 gene expression in brain of patients with medically intractable epilepsy. Epilepsia 36:1-6.

    Google Scholar 

  • Tsuji, A., Terasaki, T., Takabatake, Y., Tenda, Y., Tamai, I., Yamashima, T., Moritani, S., Tsuruo, T., and Yamashita, J. (1992). P-Glycoprotein as the drug efflux pump in primary cultured bovine brain capillary endothelial cells. Life Sci. 51:1427-1437.

    Google Scholar 

  • Tsuji, A., Tamai, I., Sakata, A., Tenda, Y., and Terasaki, T. (1993). Restricted transport of cyclosporin A across the blood-brain barrier by a multidrug transporter, P-glycoprotein. Biochem. Pharmacol. 46:1096-1099.

    Google Scholar 

  • Wang, Q., Yang, H., Miller, D. W., and Elmquist, W. F. (1995). Effect of the P-glycoprotein inhibitor, cyclosporin A, on the distribution of rhodamine-123 to the brain: An in vivo microdialysis study in freely-moving rats. Biochem. Biophys. Res. Commun. 211:719-726.

    Google Scholar 

  • Weiler-Guettler, H., Zinke, H., Schepelmann, S., Seehaus, B., and Gassen, H. G. (1993). In Pardridge, W. M. (ed.), The Blood-Brain Barrier: Cellular and Molecular Biology, Raven Press, New York, pp. 323-338.

    Google Scholar 

  • White, F. P., Dutton, G. R., and Norenberg, M. D. (1981). Microvessels isolated from rat brain: Localization of astrocyte processes by immunohistochemical techniques. J. Neurochem. 36:328-332.

    Google Scholar 

  • Zaman, G. J. R., Flens, M. J., van Leusden, M. R., de Haas, M., Mulder, H. S., Lankelma, J., Pinedo, H. M., Scheper, R. J., Baas, F., Broxterman, H. J., and Borst, P. (1994). The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump. Proc. Natl. Acad. Sci. USA 91:8822-8826.

    Google Scholar 

  • Zamora, J. M., Pearce, H. L., and Beck, W. T. (1988). Physical-chemical properties shared by compounds that modulate multidrug resistance in human leukemic cells. Mol. Pharmacol. 33:454-462.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golden, P.L., Pardridge, W.M. Brain Microvascular P-Glycoprotein and a Revised Model of Multidrug Resistance in Brain. Cell Mol Neurobiol 20, 165–181 (2000). https://doi.org/10.1023/A:1007093521681

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007093521681

Navigation